Weak Acids, Weak Bases, and K_a/K_b
Understand weak acid/base equilibria, acid and base dissociation constants (K_a and K_b), and percent ionization.
Weak Acids, Weak Bases, and K_a/K_b
Weak Acids
Definition: Partially ionizes in water (< 100%)
General equilibrium:
Simplified: HA ⇌ H⁺ + A⁻
Examples: CH₃COOH, HF, HNO₂, H₃PO₄
Acid Dissociation Constant (K_a)
Equilibrium expression:
K_a magnitude:
- Larger K_a = stronger acid
- Typical range: 10⁻² to 10⁻¹⁴
- Strong acids: K_a >> 1
Common weak acids:
| Acid | K_a | |------|-----| | HF | 6.8 × 10⁻⁴ | | HNO₂ | 4.5 × 10⁻⁴ | | CH₃COOH | 1.8 × 10⁻⁵ | | H₂CO₃ | 4.3 × 10⁻⁷ |
Weak Acid pH Calculation
Use ICE table:
Example: HA ⇌ H⁺ + A⁻
| | HA | H⁺ | A⁻ | |-|---------|-------|-------| | I | [HA]₀ | 0 | 0 | | C | -x | +x | +x | | E | [HA]₀-x | x | x |
K_a expression:
Solve for x = [H⁺], then pH = -log x
Small x Approximation (5% Rule)
When [HA]₀/K_a > 100:
Assume: [HA]₀ - x ≈ [HA]₀
Check validity:
- Calculate x
- If x/[HA]₀ < 5%, approximation valid
- If x/[HA]₀ > 5%, use quadratic
Weak Bases
Definition: Partially ionize by accepting H⁺
General equilibrium:
Examples: NH₃, CH₃NH₂, pyridine
Base Dissociation Constant (K_b)
Equilibrium expression:
Common weak bases:
| Base | K_b | |------|-----| | NH₃ | 1.8 × 10⁻⁵ | | CH₃NH₂ | 4.4 × 10⁻⁴ | | C₅H₅N (pyridine) | 1.7 × 10⁻⁹ |
Weak Base pH Calculation
ICE table: B + H₂O ⇌ BH⁺ + OH⁻
| | B | BH⁺ | OH⁻ | |-|---------|-------|-------| | I | [B]₀ | 0 | 0 | | C | -x | +x | +x | | E | [B]₀-x | x | x |
K_b expression:
Solve for x = [OH⁻]:
- Calculate x from K_b
- pOH = -log[OH⁻]
- pH = 14.00 - pOH
Relationship between K_a and K_b
For conjugate acid-base pair:
Example: NH₃/NH₄⁺
- K_b(NH₃) = 1.8 × 10⁻⁵
- K_a(NH₄⁺) = K_w/K_b = 5.6 × 10⁻¹⁰
Stronger acid → weaker conjugate base Stronger base → weaker conjugate acid
Percent Ionization
Measure of acid/base strength:
\text{% ionization} = \frac{[H^+]_{\text{eq}}}{[HA]_0} \times 100\%
For weak acids:
- Typically < 5%
- Increases with dilution
- Larger K_a → larger % ionization
Example: 0.10 M acetic acid
- K_a = 1.8 × 10⁻⁵
- [H⁺] = 1.3 × 10⁻³ M
- % ionization = (1.3 × 10⁻³/0.10) × 100% = 1.3%
pK_a and pK_b
Analogous to pH:
Relationship:
Interpretation:
- Smaller pK_a = stronger acid
- Smaller pK_b = stronger base
Polyprotic Acids
Multiple ionizable protons:
Example: H₂SO₃
First ionization: H₂SO₃ ⇌ H⁺ + HSO₃⁻
- K_a1 (larger)
Second ionization: HSO₃⁻ ⇌ H⁺ + SO₃²⁻
- K_a2 (smaller)
Pattern: K_a1 >> K_a2 >> K_a3
For pH: Usually only first ionization matters (K_a1 >> K_a2)
📚 Practice Problems
1Problem 1easy
❓ Question:
Calculate the pH of a 0.10 M solution of acetic acid (CH₃COOH). K_a = 1.8 × 10⁻⁵.
💡 Show Solution
Given:
- [CH₃COOH]₀ = 0.10 M
- K_a = 1.8 × 10⁻⁵
Equilibrium: CH₃COOH ⇌ H⁺ + CH₃COO⁻
Set up ICE table:
| | CH₃COOH | H⁺ | CH₃COO⁻ | |-|---------|-----|---------| | I | 0.10 | 0 | 0 | | C | -x | +x | +x | | E | 0.10-x | x | x |
Write K_a expression:
Check for approximation:
Since ratio > 100, try small x approximation:
Check validity:
1.34% < 5% ✓ Approximation valid!
Calculate pH:
[H⁺] = x = 1.34 × 10⁻³ M
Answer: pH = 2.87
Percent ionization:
Only 1.3% of acetic acid ionized (weak acid!)
2Problem 2hard
❓ Question:
Calculate the pH of a 0.10 M solution of acetic acid (CH₃COOH) given K_a = 1.8 × 10⁻⁵.
💡 Show Solution
Solution:
Equilibrium: CH₃COOH ⇌ H⁺ + CH₃COO⁻
ICE table: | | CH₃COOH | H⁺ | CH₃COO⁻ | |----------|---------|-----|---------| | Initial | 0.10 | 0 | 0 | | Change | -x | +x | +x | | Equil. | 0.10-x | x | x |
K_a expression: K_a = [H⁺][CH₃COO⁻] / [CH₃COOH] 1.8 × 10⁻⁵ = x² / (0.10 - x)
Simplification: Assume x << 0.10, so 0.10 - x ≈ 0.10 1.8 × 10⁻⁵ = x² / 0.10 x² = 1.8 × 10⁻⁶ x = 1.34 × 10⁻³ M = [H⁺]
Check assumption: 1.34 × 10⁻³ / 0.10 = 0.0134 = 1.34% < 5% ✓
Calculate pH: pH = -log(1.34 × 10⁻³) = 2.87
3Problem 3medium
❓ Question:
Calculate the pH of a 0.25 M ammonia (NH₃) solution. K_b = 1.8 × 10⁻⁵.
💡 Show Solution
Given:
- [NH₃]₀ = 0.25 M
- K_b = 1.8 × 10⁻⁵
Equilibrium: NH₃ + H₂O ⇌ NH₄⁺ + OH⁻
Set up ICE table:
| | NH₃ | NH₄⁺ | OH⁻ | |-|---------|-------|-------| | I | 0.25 | 0 | 0 | | C | -x | +x | +x | | E | 0.25-x | x | x |
Write K_b expression:
Check approximation:
✓
Use approximation:
Check: x/[B]₀ = 2.12×10⁻³/0.25 = 0.85% < 5% ✓
Calculate pOH:
[OH⁻] = x = 2.12 × 10⁻³ M
Calculate pH:
Answer: pH = 11.33
Interpretation:
- pH > 7: basic solution ✓
- Weak base partially ionizes
- Only ~0.85% ionized
4Problem 4hard
❓ Question:
Calculate the pH of a 0.50 M solution of ammonia (NH₃) given K_b = 1.8 × 10⁻⁵.
💡 Show Solution
Solution:
Equilibrium: NH₃ + H₂O ⇌ NH₄⁺ + OH⁻
ICE table: | | NH₃ | NH₄⁺ | OH⁻ | |----------|-------|------|------| | Initial | 0.50 | 0 | 0 | | Change | -x | +x | +x | | Equil. | 0.50-x| x | x |
K_b expression: K_b = [NH₄⁺][OH⁻] / [NH₃] 1.8 × 10⁻⁵ = x² / (0.50 - x)
Assume x << 0.50: 1.8 × 10⁻⁵ = x² / 0.50 x² = 9.0 × 10⁻⁶ x = 3.0 × 10⁻³ M = [OH⁻]
Check: 3.0 × 10⁻³ / 0.50 = 0.006 = 0.6% < 5% ✓
Calculate pOH: pOH = -log(3.0 × 10⁻³) = 2.52
Calculate pH: pH = 14.00 - 2.52 = 11.48
5Problem 5hard
❓ Question:
The pH of a 0.50 M solution of a weak acid (HA) is 2.68. Calculate: (a) K_a, (b) percent ionization, (c) K_b for the conjugate base A⁻.
💡 Show Solution
Given:
- [HA]₀ = 0.50 M
- pH = 2.68
Equilibrium: HA ⇌ H⁺ + A⁻
(a) Calculate K_a
Find [H⁺] from pH:
ICE table:
| | HA | H⁺ | A⁻ | |-|-----------|---------------|---------------| | I | 0.50 | 0 | 0 | | C | -2.09×10⁻³ | +2.09×10⁻³ | +2.09×10⁻³ | | E | 0.498 | 2.09×10⁻³ | 2.09×10⁻³ |
At equilibrium:
- [HA] = 0.50 - 0.00209 = 0.498 M
- [H⁺] = [A⁻] = 2.09 × 10⁻³ M
Calculate K_a:
Answer (a): K_a = 8.8 × 10⁻⁶
(b) Calculate percent ionization
Answer (b): 0.42% ionization
(c) Calculate K_b for conjugate base A⁻
Use relationship:
Answer (c): K_b = 1.1 × 10⁻⁹
Summary:
| Property | Value | |----------|-------| | K_a (HA) | 8.8 × 10⁻⁶ | | % ionization | 0.42% | | K_b (A⁻) | 1.1 × 10⁻⁹ |
Note: HA is moderately weak acid; A⁻ is very weak base (small K_b)
Practice with Flashcards
Review key concepts with our flashcard system
Browse All Topics
Explore other calculus topics