Volumes of Revolution: Disk Method

Finding volumes by rotating regions around an axis

🔄 Volumes of Revolution: Disk Method

The Volume Problem

How do we find the volume of a 3D solid formed by rotating a region around an axis?

Example: Rotate y=xy = \sqrt{x} from x=0x = 0 to x=4x = 4 around the x-axis.

💡 Key Idea: Slice the solid into thin disks (like coins), find the volume of each disk, then integrate!


The Disk Method Formula

Rotating around the x-axis

When rotating y=f(x)y = f(x) around the x-axis from x=ax = a to x=bx = b:

V=abπ[f(x)]2dx=πab[f(x)]2dxV = \int_a^b \pi [f(x)]^2\,dx = \pi \int_a^b [f(x)]^2\,dx

Think: Volume = π\pi × (radius)² × thickness, summed up!


Where Does This Come From?

Volume of a Disk

A disk (thin cylinder) has:

  • Radius: r=f(x)r = f(x)
  • Thickness: Δx\Delta x
  • Volume: πr2Δx=π[f(x)]2Δx\pi r^2 \cdot \Delta x = \pi [f(x)]^2 \Delta x

Summing the Disks

Vi=1nπ[f(xi)]2ΔxV \approx \sum_{i=1}^n \pi [f(x_i)]^2 \Delta x

Taking the limit as nn \to \infty:

V=limni=1nπ[f(xi)]2Δx=abπ[f(x)]2dxV = \lim_{n \to \infty} \sum_{i=1}^n \pi [f(x_i)]^2 \Delta x = \int_a^b \pi [f(x)]^2\,dx


Example 1: Basic Disk Method

Find the volume when y=xy = \sqrt{x} from x=0x = 0 to x=4x = 4 is rotated around the x-axis.

Step 1: Set up the integral

V=π04[x]2dxV = \pi \int_0^4 [\sqrt{x}]^2\,dx

=π04xdx= \pi \int_0^4 x\,dx


Step 2: Integrate

=π[x22]04= \pi \left[\frac{x^2}{2}\right]_0^4

=π(1620)= \pi \left(\frac{16}{2} - 0\right)

=π8=8π= \pi \cdot 8 = 8\pi

Answer: 8π8\pi cubic units


Example 2: Polynomial Function

Find the volume when y=x2y = x^2 from x=0x = 0 to x=2x = 2 is rotated around the x-axis.

Step 1: Set up the integral

V=π02[x2]2dxV = \pi \int_0^2 [x^2]^2\,dx

=π02x4dx= \pi \int_0^2 x^4\,dx


Step 2: Integrate

=π[x55]02= \pi \left[\frac{x^5}{5}\right]_0^2

=π(3250)=32π5= \pi \left(\frac{32}{5} - 0\right) = \frac{32\pi}{5}

Answer: 32π5\frac{32\pi}{5} cubic units


Rotating Around the y-axis

Formula for y-axis rotation

When rotating x=g(y)x = g(y) around the y-axis from y=cy = c to y=dy = d:

V=πcd[g(y)]2dyV = \pi \int_c^d [g(y)]^2\,dy

Key: Swap xx and yy, integrate with respect to yy!


Example 3: Rotation Around y-axis

Find the volume when x=y2x = y^2 from y=0y = 0 to y=2y = 2 is rotated around the y-axis.

Step 1: Set up the integral

V=π02[y2]2dyV = \pi \int_0^2 [y^2]^2\,dy

=π02y4dy= \pi \int_0^2 y^4\,dy


Step 2: Integrate

=π[y55]02= \pi \left[\frac{y^5}{5}\right]_0^2

=π(3250)=32π5= \pi \left(\frac{32}{5} - 0\right) = \frac{32\pi}{5}

Answer: 32π5\frac{32\pi}{5} cubic units


Rewriting Functions

Sometimes you need to solve for xx in terms of yy (or vice versa).

Example: Rotate y=xy = \sqrt{x} around the y-axis from y=0y = 0 to y=2y = 2.

Step 1: Rewrite as x=g(y)x = g(y)

y=xy = \sqrt{x} y2=xy^2 = x x=y2x = y^2


Step 2: Set up and integrate

V=π02[y2]2dy=π02y4dyV = \pi \int_0^2 [y^2]^2\,dy = \pi \int_0^2 y^4\,dy

=π[y55]02=32π5= \pi \left[\frac{y^5}{5}\right]_0^2 = \frac{32\pi}{5}


Special Solids

Sphere

Rotate y=r2x2y = \sqrt{r^2 - x^2} (semicircle) around the x-axis from x=rx = -r to x=rx = r:

V=πrr(r2x2)dx=4πr33V = \pi \int_{-r}^r (r^2 - x^2)\,dx = \frac{4\pi r^3}{3}

This is the famous sphere volume formula!


Cone

Rotate y=hrxy = \frac{h}{r}x (line) from x=0x = 0 to x=rx = r around the x-axis:

V=π0r(hrx)2dx=πh2r20rx2dxV = \pi \int_0^r \left(\frac{h}{r}x\right)^2\,dx = \frac{\pi h^2}{r^2} \int_0^r x^2\,dx

=πh2r2r33=πrh23= \frac{\pi h^2}{r^2} \cdot \frac{r^3}{3} = \frac{\pi r h^2}{3}

With base radius rr and height hh, we get V=13πr2hV = \frac{1}{3}\pi r^2 h


Example 4: Trigonometric Function

Find the volume when y=sinxy = \sin x from x=0x = 0 to x=πx = \pi is rotated around the x-axis.

Step 1: Set up the integral

V=π0π[sinx]2dxV = \pi \int_0^{\pi} [\sin x]^2\,dx

=π0πsin2xdx= \pi \int_0^{\pi} \sin^2 x\,dx


Step 2: Use trig identity

sin2x=1cos2x2\sin^2 x = \frac{1 - \cos 2x}{2}

V=π0π1cos2x2dxV = \pi \int_0^{\pi} \frac{1 - \cos 2x}{2}\,dx

=π20π(1cos2x)dx= \frac{\pi}{2} \int_0^{\pi} (1 - \cos 2x)\,dx


Step 3: Integrate

=π2[xsin2x2]0π= \frac{\pi}{2} \left[x - \frac{\sin 2x}{2}\right]_0^{\pi}

=π2[(πsin2π2)(0sin02)]= \frac{\pi}{2} \left[\left(\pi - \frac{\sin 2\pi}{2}\right) - \left(0 - \frac{\sin 0}{2}\right)\right]

=π2[π0]=π22= \frac{\pi}{2}[\pi - 0] = \frac{\pi^2}{2}

Answer: π22\frac{\pi^2}{2} cubic units


The Washer Method (Preview)

What if there's a hole in the middle?

Example: Rotate the region between y=xy = x and y=x2y = x^2 around the x-axis.

This creates a washer (disk with hole)!

Formula: V=πab[(R(x))2(r(x))2]dxV = \pi \int_a^b [(R(x))^2 - (r(x))^2]\,dx

where R(x)R(x) is outer radius and r(x)r(x) is inner radius.

We'll cover this in detail next!


⚠️ Common Mistakes

Mistake 1: Forgetting to Square

WRONG: V=πabf(x)dxV = \pi \int_a^b f(x)\,dx

RIGHT: V=πab[f(x)]2dxV = \pi \int_a^b [f(x)]^2\,dx

The radius must be squared!


Mistake 2: Forgetting π

Volume of revolution always involves π\pi!

V=πab[f(x)]2dxV = \pi \int_a^b [f(x)]^2\,dx


Mistake 3: Wrong Variable

Rotating around x-axis: integrate with respect to xx

Rotating around y-axis: integrate with respect to yy

Match the axis to the variable!


Mistake 4: Using Diameter Instead of Radius

The disk method uses radius, not diameter!

Radius = f(x)f(x) (distance from axis to curve)


Summary of Disk Method

Around x-axis

V=πab[f(x)]2dxV = \pi \int_a^b [f(x)]^2\,dx

  • Radius: r=f(x)r = f(x)
  • Limits: x=ax = a to x=bx = b

Around y-axis

V=πcd[g(y)]2dyV = \pi \int_c^d [g(y)]^2\,dy

  • Radius: r=g(y)r = g(y)
  • Limits: y=cy = c to y=dy = d

Visualizing the Solid

Steps to visualize:

  1. Sketch the 2D region
  2. Identify the axis of rotation
  3. Imagine spinning the region
  4. See the 3D solid formed
  5. Picture a cross-section (disk)

Practice this mental rotation - it helps tremendously!


📝 Practice Strategy

  1. Sketch the region to be rotated
  2. Identify the axis of rotation (x or y)
  3. Find the radius function r=f(x)r = f(x) or r=g(y)r = g(y)
  4. Set up: V=π[radius]2d(variable)V = \pi \int [\text{radius}]^2\,d(\text{variable})
  5. Don't forget to square the radius!
  6. Integrate and evaluate
  7. Include π\pi in your final answer
  8. Check units: volume should be cubic units

📚 Practice Problems

1Problem 1easy

Question:

Find the volume of the solid formed by rotating y=2xy = 2x from x=0x = 0 to x=3x = 3 around the x-axis.

💡 Show Solution

Step 1: Set up the integral

Rotating around x-axis, so radius = f(x)=2xf(x) = 2x

V=π03[2x]2dxV = \pi \int_0^3 [2x]^2\,dx

=π034x2dx= \pi \int_0^3 4x^2\,dx

=4π03x2dx= 4\pi \int_0^3 x^2\,dx


Step 2: Integrate

=4π[x33]03= 4\pi \left[\frac{x^3}{3}\right]_0^3

=4π(2730)= 4\pi \left(\frac{27}{3} - 0\right)

=4π9=36π= 4\pi \cdot 9 = 36\pi

Answer: 36π36\pi cubic units

Note: This is a cone with base radius 6 and height 3. Check: V=13π(6)2(3)=36πV = \frac{1}{3}\pi(6)^2(3) = 36\pi

2Problem 2hard

Question:

Find the volume of the solid generated by revolving the region bounded by y=xy = \sqrt{x}, y=0y = 0, and x=4x = 4 about the xx-axis.

💡 Show Solution

Solution:

Use the disk method: V=πab[R(x)]2dxV = \pi \int_a^b [R(x)]^2 \, dx

Here, R(x)=xR(x) = \sqrt{x} (radius of disk at position xx)

Bounds: a=0a = 0 to b=4b = 4

V=π04(x)2dxV = \pi \int_0^4 (\sqrt{x})^2 \, dx

=π04xdx= \pi \int_0^4 x \, dx

=π[x22]04= \pi \left[\frac{x^2}{2}\right]_0^4

=π(1620)= \pi \left(\frac{16}{2} - 0\right)

=8π= 8\pi cubic units

3Problem 3hard

Question:

Find the volume of the solid formed by revolving y=2xy = 2x from x=0x = 0 to x=3x = 3 about the xx-axis.

💡 Show Solution

Solution:

Disk method: V=π03(2x)2dxV = \pi \int_0^3 (2x)^2 \, dx

=π034x2dx= \pi \int_0^3 4x^2 \, dx

=4π[x33]03= 4\pi \left[\frac{x^3}{3}\right]_0^3

=4π273= 4\pi \cdot \frac{27}{3}

=4π9=36π= 4\pi \cdot 9 = 36\pi cubic units

4Problem 4medium

Question:

Find the volume when the region bounded by y=4x2y = \sqrt{4-x^2} (semicircle) from x=2x = -2 to x=2x = 2 is rotated around the x-axis.

💡 Show Solution

Step 1: Recognize the shape

y=4x2y = \sqrt{4-x^2} is the top half of circle x2+y2=4x^2 + y^2 = 4 (radius 2).

Rotating this semicircle around the x-axis creates a sphere of radius 2!


Step 2: Set up the integral

V=π22[4x2]2dxV = \pi \int_{-2}^2 [\sqrt{4-x^2}]^2\,dx

=π22(4x2)dx= \pi \int_{-2}^2 (4-x^2)\,dx


Step 3: Integrate

=π[4xx33]22= \pi \left[4x - \frac{x^3}{3}\right]_{-2}^2


At x=2x = 2: 4(2)83=883=1634(2) - \frac{8}{3} = 8 - \frac{8}{3} = \frac{16}{3}

At x=2x = -2: 4(2)83=8+83=1634(-2) - \frac{-8}{3} = -8 + \frac{8}{3} = -\frac{16}{3}


Step 4: Subtract

V=π(163(163))V = \pi \left(\frac{16}{3} - \left(-\frac{16}{3}\right)\right)

=π323=32π3= \pi \cdot \frac{32}{3} = \frac{32\pi}{3}

Answer: 32π3\frac{32\pi}{3} cubic units

Check: Sphere formula with r=2r = 2: V=4π(2)33=32π3V = \frac{4\pi(2)^3}{3} = \frac{32\pi}{3}

5Problem 5hard

Question:

Find the volume when y=exy = e^x from x=0x = 0 to x=1x = 1 is rotated around the x-axis.

💡 Show Solution

Step 1: Set up the integral

V=π01[ex]2dxV = \pi \int_0^1 [e^x]^2\,dx

=π01e2xdx= \pi \int_0^1 e^{2x}\,dx


Step 2: Integrate

For e2xdx\int e^{2x}\,dx, use substitution or remember: eaxdx=eaxa\int e^{ax}\,dx = \frac{e^{ax}}{a}

=π[e2x2]01= \pi \left[\frac{e^{2x}}{2}\right]_0^1


Step 3: Evaluate

=π(e22e02)= \pi \left(\frac{e^2}{2} - \frac{e^0}{2}\right)

=π(e2212)= \pi \left(\frac{e^2}{2} - \frac{1}{2}\right)

=π2(e21)= \frac{\pi}{2}(e^2 - 1)

Answer: π(e21)2\frac{\pi(e^2 - 1)}{2} cubic units