Newton's Law of Universal Gravitation

Gravitational force between masses and gravitational fields

🌍 Newton's Law of Universal Gravitation

The Universal Law

Every object in the universe attracts every other object with a gravitational force. Newton's Law of Universal Gravitation describes this attraction:

Fg=Gm1m2r2F_g = G\frac{m_1 m_2}{r^2}

where:

  • FgF_g = gravitational force (N)
  • GG = universal gravitational constant = 6.67×10116.67 \times 10^{-11} N·m²/kg²
  • m1,m2m_1, m_2 = masses of the two objects (kg)
  • rr = distance between the centers of the masses (m)

💡 Key Insight: Gravity acts between ALL objects, but we only notice it for very massive objects (like planets) because GG is extremely small!


Characteristics of Gravitational Force

1. Always Attractive

Unlike electric force (which can attract or repel), gravitational force is always attractive.

2. Action-Reaction Pairs

By Newton's 3rd Law, the force Earth exerts on you equals the force you exert on Earth:

FEarthyou=FyouEarthF_{Earth \to you} = F_{you \to Earth}

Both have magnitude GmEarthmyour2\frac{Gm_{Earth}m_{you}}{r^2}

3. Inverse Square Law

Force is inversely proportional to r2r^2:

  • If distance doubles, force becomes 14\frac{1}{4} as strong
  • If distance triples, force becomes 19\frac{1}{9} as strong

4. Long Range

Gravity has infinite range (never becomes exactly zero), though it becomes negligibly small at large distances.


Gravitational Field

The gravitational field gg at a point is the gravitational force per unit mass:

g=Fgm=GMr2g = \frac{F_g}{m} = \frac{GM}{r^2}

where MM is the mass creating the field and rr is the distance from its center.

At Earth's Surface

g=GMEarthREarth2=9.8 m/s2g = \frac{GM_{Earth}}{R_{Earth}^2} = 9.8 \text{ m/s}^2

where:

  • MEarth=5.97×1024M_{Earth} = 5.97 \times 10^{24} kg
  • REarth=6.37×106R_{Earth} = 6.37 \times 10^6 m

Above Earth's Surface

At height hh above Earth's surface:

gh=GMEarth(REarth+h)2g_h = \frac{GM_{Earth}}{(R_{Earth} + h)^2}

As altitude increases, gg decreases.

Example: At the altitude of the International Space Station (~400 km):

gISS8.7 m/s2g_{ISS} \approx 8.7 \text{ m/s}^2

(About 89% of surface gravity - astronauts aren't "weightless" due to zero gravity, but due to free fall!)


Weight vs. Mass

Mass

  • Definition: Amount of matter in an object
  • Property: Intrinsic to the object
  • Units: kg
  • Changes?: Never changes

Weight

  • Definition: Gravitational force on an object: W=mgW = mg
  • Property: Depends on location
  • Units: N (newtons)
  • Changes?: Yes! Different on Moon, Mars, in orbit, etc.

Example: A 70 kg person

  • Mass: 70 kg (everywhere)
  • Weight on Earth: W=70×9.8=686W = 70 \times 9.8 = 686 N
  • Weight on Moon: W=70×1.6=112W = 70 \times 1.6 = 112 N (Moon's g1.6g \approx 1.6 m/s²)

Gravitational Force Inside vs. Outside

Outside a Uniform Sphere

Use the distance from the center of the sphere:

F=GMmr2F = \frac{GMm}{r^2}

This applies to any point outside the sphere (including at the surface).

Inside a Uniform Sphere

Only the mass inside radius rr contributes to the force. The shell of mass outside rr has zero net effect!

F=GMinsidemr2F = \frac{GM_{inside}m}{r^2}

For a uniform sphere: Minside=Mr3R3M_{inside} = M\frac{r^3}{R^3}

So: F=GMmR3rF = \frac{GMm}{R^3}r

The force is proportional to rr inside a uniform sphere (increases linearly from zero at center).


Orbital Motion

When gravitational force provides the centripetal force, objects orbit!

Circular Orbits

Set gravitational force equal to required centripetal force:

GMmr2=mv2r\frac{GMm}{r^2} = \frac{mv^2}{r}

Simplify (mass mm cancels):

GMr=v2\frac{GM}{r} = v^2

v=GMrv = \sqrt{\frac{GM}{r}}

Orbital Speed

The orbital speed is independent of the satellite's mass and depends only on:

  • The mass of the central body (MM)
  • The orbital radius (rr)

Important: Closer orbits are faster! (Smaller rr means larger vv)

Orbital Period

Using v=2πrTv = \frac{2\pi r}{T}:

2πrT=GMr\frac{2\pi r}{T} = \sqrt{\frac{GM}{r}}

T=2πr3GMT = 2\pi\sqrt{\frac{r^3}{GM}}

Kepler's 3rd Law: T2r3T^2 \propto r^3


Escape Velocity

The escape velocity is the minimum speed needed to escape a planet's gravitational pull:

vesc=2GMRv_{esc} = \sqrt{\frac{2GM}{R}}

For Earth: vesc11,200v_{esc} \approx 11,200 m/s (about 25,000 mph!)

Note: This is 2\sqrt{2} times the orbital velocity at the surface.


⚠️ Common Mistakes

Mistake 1: Forgetting r²

Wrong: Fg=Gm1m2rF_g = \frac{Gm_1m_2}{r}Right: Fg=Gm1m2r2F_g = \frac{Gm_1m_2}{r^2}

Mistake 2: Using Surface Distance for Satellites

Wrong: Using Earth's radius for a satellite 1000 km up ✅ Right: Use r=REarth+h=6370+1000=7370r = R_{Earth} + h = 6370 + 1000 = 7370 km

Mistake 3: Confusing Weight and Mass

Wrong: "I'm weightless in space, so my mass is zero" ✅ Right: Mass is constant; weight is mgmg where gg varies with location

Mistake 4: Thinking Gravity Stops

Wrong: "There's no gravity in space" ✅ Right: Gravity extends infinitely (though it weakens with distance). Astronauts feel "weightless" because they're in free fall, not because gravity is absent.


Problem-Solving Strategy

  1. Identify the masses and the distance between their centers
  2. Use Fg=Gm1m2r2F_g = \frac{Gm_1m_2}{r^2} for gravitational force
  3. For orbits, set Fg=FcF_g = F_c: GMmr2=mv2r\frac{GMm}{r^2} = \frac{mv^2}{r}
  4. Remember the satellite's mass cancels in orbital calculations
  5. Check if distance is from center or from surface (add radius if needed)

Real-World Applications

GPS Satellites

  • Orbit at ~20,200 km altitude
  • Must account for weaker gravity (slower time due to general relativity)
  • Orbital period ~12 hours

Geostationary Satellites

  • Orbit at ~35,800 km altitude
  • Period = 24 hours (matches Earth's rotation)
  • Appear stationary above a point on equator

Tides

  • Moon's gravity creates tidal bulges
  • Differential force (near side vs. far side) causes tides
  • Sun also contributes (spring and neap tides)

Key Formulas Summary

| Formula | Description | |---------|-------------| | Fg=Gm1m2r2F_g = \frac{Gm_1m_2}{r^2} | Gravitational force between masses | | g=GMr2g = \frac{GM}{r^2} | Gravitational field strength | | W=mgW = mg | Weight of object | | vorbit=GMrv_{orbit} = \sqrt{\frac{GM}{r}} | Orbital speed | | T=2πr3GMT = 2\pi\sqrt{\frac{r^3}{GM}} | Orbital period | | vesc=2GMRv_{esc} = \sqrt{\frac{2GM}{R}} | Escape velocity |

Constants:

  • G=6.67×1011G = 6.67 \times 10^{-11} N·m²/kg²
  • MEarth=5.97×1024M_{Earth} = 5.97 \times 10^{24} kg
  • REarth=6.37×106R_{Earth} = 6.37 \times 10^6 m

📚 Practice Problems

1Problem 1easy

Question:

Calculate the gravitational force between Earth (mass = 5.97×10245.97 \times 10^{24} kg) and the Moon (mass = 7.35×10227.35 \times 10^{22} kg) when they are 3.84×1083.84 \times 10^8 m apart.

💡 Show Solution

Given Information:

  • Earth's mass: ME=5.97×1024M_E = 5.97 \times 10^{24} kg
  • Moon's mass: MM=7.35×1022M_M = 7.35 \times 10^{22} kg
  • Distance: r=3.84×108r = 3.84 \times 10^8 m
  • Gravitational constant: G=6.67×1011G = 6.67 \times 10^{-11} N·m²/kg²

Find: Gravitational force FgF_g


Solution:

Use Newton's Law of Universal Gravitation:

Fg=Gm1m2r2F_g = G\frac{m_1 m_2}{r^2}

Substitute values:

Fg=(6.67×1011)(5.97×1024)(7.35×1022)(3.84×108)2F_g = (6.67 \times 10^{-11})\frac{(5.97 \times 10^{24})(7.35 \times 10^{22})}{(3.84 \times 10^8)^2}

Calculate the numerator: 6.67×5.97×7.35=292.66.67 \times 5.97 \times 7.35 = 292.6 1011×1024×1022=103510^{-11} \times 10^{24} \times 10^{22} = 10^{35} Numerator=292.6×1035=2.926×1037\text{Numerator} = 292.6 \times 10^{35} = 2.926 \times 10^{37}

Calculate the denominator: (3.84)2=14.75(3.84)^2 = 14.75 (108)2=1016(10^8)^2 = 10^{16} Denominator=14.75×1016=1.475×1017\text{Denominator} = 14.75 \times 10^{16} = 1.475 \times 10^{17}

Divide: Fg=2.926×10371.475×1017F_g = \frac{2.926 \times 10^{37}}{1.475 \times 10^{17}}

Fg=1.98×1020 NF_g = 1.98 \times 10^{20} \text{ N}


Answer: The gravitational force is approximately 1.98×10201.98 \times 10^{20} N (or 198 billion billion newtons).

Note: By Newton's 3rd Law, this is both the force Earth exerts on the Moon AND the force the Moon exerts on Earth!

2Problem 2medium

Question:

The International Space Station orbits at an altitude of 400 km above Earth's surface. Calculate (a) the gravitational field strength at that altitude, and (b) the orbital speed of the ISS.

💡 Show Solution

Given Information:

  • Altitude: h=400h = 400 km = 4.0×1054.0 \times 10^5 m
  • Earth's mass: ME=5.97×1024M_E = 5.97 \times 10^{24} kg
  • Earth's radius: RE=6.37×106R_E = 6.37 \times 10^6 m
  • G=6.67×1011G = 6.67 \times 10^{-11} N·m²/kg²

(a) Find gravitational field strength gg at altitude hh


Step 1: Find the distance from Earth's center

r=RE+h=6.37×106+4.0×105r = R_E + h = 6.37 \times 10^6 + 4.0 \times 10^5

r=6.77×106 mr = 6.77 \times 10^6 \text{ m}


Step 2: Calculate gravitational field

g=GMEr2g = \frac{GM_E}{r^2}

g=(6.67×1011)(5.97×1024)(6.77×106)2g = \frac{(6.67 \times 10^{-11})(5.97 \times 10^{24})}{(6.77 \times 10^6)^2}

Numerator: 6.67×5.97×1013=3.98×10146.67 \times 5.97 \times 10^{13} = 3.98 \times 10^{14}

Denominator: (6.77)2×1012=45.8×1012=4.58×1013(6.77)^2 \times 10^{12} = 45.8 \times 10^{12} = 4.58 \times 10^{13}

g=3.98×10144.58×1013=8.69 m/s2g = \frac{3.98 \times 10^{14}}{4.58 \times 10^{13}} = 8.69 \text{ m/s}^2


(b) Find orbital speed vv


Step 3: Set gravitational force = centripetal force

GMEmr2=mv2r\frac{GM_E m}{r^2} = \frac{mv^2}{r}

The mass mm cancels:

GMEr=v2\frac{GM_E}{r} = v^2

v=GMErv = \sqrt{\frac{GM_E}{r}}


Step 4: Calculate

v=(6.67×1011)(5.97×1024)6.77×106v = \sqrt{\frac{(6.67 \times 10^{-11})(5.97 \times 10^{24})}{6.77 \times 10^6}}

v=3.98×10146.77×106v = \sqrt{\frac{3.98 \times 10^{14}}{6.77 \times 10^6}}

v=5.88×107v = \sqrt{5.88 \times 10^7}

v=7.67×103 m/s=7670 m/sv = 7.67 \times 10^3 \text{ m/s} = 7670 \text{ m/s}


Alternative for part (b):

Since g=GMEr2g = \frac{GM_E}{r^2}, we have GME=gr2GM_E = gr^2

v=GMEr=grv = \sqrt{\frac{GM_E}{r}} = \sqrt{gr}

v=(8.69)(6.77×106)v = \sqrt{(8.69)(6.77 \times 10^6)}

v=5.88×107=7670 m/sv = \sqrt{5.88 \times 10^7} = 7670 \text{ m/s}


Answers:

  • (a) gg \approx 8.69 m/s² (about 89% of surface gravity)
  • (b) Orbital speed \approx 7670 m/s (about 17,000 mph!)

Note: Despite gg being nearly the same as on Earth's surface, astronauts feel "weightless" because both they and the ISS are in free fall toward Earth!

3Problem 3hard

Question:

A satellite is in a circular orbit around Earth with a period of 24 hours (a geostationary orbit). Calculate: (a) the orbital radius, (b) the altitude above Earth's surface, and (c) the orbital speed.

💡 Show Solution

Given Information:

  • Period: T=24T = 24 hours = 86,40086,400 s
  • Earth's mass: ME=5.97×1024M_E = 5.97 \times 10^{24} kg
  • Earth's radius: RE=6.37×106R_E = 6.37 \times 10^6 m
  • G=6.67×1011G = 6.67 \times 10^{-11} N·m²/kg²

(a) Find orbital radius rr


Step 1: Use the period formula

T=2πr3GMET = 2\pi\sqrt{\frac{r^3}{GM_E}}


Step 2: Solve for rr

Square both sides: T2=4π2r3GMET^2 = 4\pi^2\frac{r^3}{GM_E}

r3=GMET24π2r^3 = \frac{GM_E T^2}{4\pi^2}

r=(GMET24π2)1/3r = \left(\frac{GM_E T^2}{4\pi^2}\right)^{1/3}


Step 3: Calculate

Numerator: GMET2=(6.67×1011)(5.97×1024)(86400)2GM_E T^2 = (6.67 \times 10^{-11})(5.97 \times 10^{24})(86400)^2

=(6.67)(5.97)(86400)2×1013= (6.67)(5.97)(86400)^2 \times 10^{13}

=(6.67)(5.97)(7.464×109)×1013= (6.67)(5.97)(7.464 \times 10^9) \times 10^{13}

=297.3×1022=2.973×1024= 297.3 \times 10^{22} = 2.973 \times 10^{24}

Denominator: 4π2=39.484\pi^2 = 39.48

r3=2.973×102439.48=7.53×1022r^3 = \frac{2.973 \times 10^{24}}{39.48} = 7.53 \times 10^{22}

r=(7.53×1022)1/3r = (7.53 \times 10^{22})^{1/3}

Using calculator or estimation: r4.22×107 mr \approx 4.22 \times 10^7 \text{ m}


(b) Find altitude hh above Earth's surface


h=rREh = r - R_E

h=4.22×1076.37×106h = 4.22 \times 10^7 - 6.37 \times 10^6

h=4.22×1070.637×107h = 4.22 \times 10^7 - 0.637 \times 10^7

h=3.58×107 m=35,800 kmh = 3.58 \times 10^7 \text{ m} = 35,800 \text{ km}


(c) Find orbital speed vv


Method 1: Using v=2πrTv = \frac{2\pi r}{T}

v=2π(4.22×107)86400v = \frac{2\pi (4.22 \times 10^7)}{86400}

v=2.65×1088.64×104v = \frac{2.65 \times 10^8}{8.64 \times 10^4}

v=3.07×103 m/s=3070 m/sv = 3.07 \times 10^3 \text{ m/s} = 3070 \text{ m/s}


Method 2: Using v=GMErv = \sqrt{\frac{GM_E}{r}}

v=(6.67×1011)(5.97×1024)4.22×107v = \sqrt{\frac{(6.67 \times 10^{-11})(5.97 \times 10^{24})}{4.22 \times 10^7}}

v=3.98×10144.22×107v = \sqrt{\frac{3.98 \times 10^{14}}{4.22 \times 10^7}}

v=9.43×106v = \sqrt{9.43 \times 10^6}

v3070 m/sv \approx 3070 \text{ m/s}


Answers:

  • (a) Orbital radius: 42,200 km (from Earth's center)
  • (b) Altitude: 35,800 km (above Earth's surface)
  • (c) Orbital speed: 3070 m/s (about 6,900 mph)

Application: Geostationary satellites at this altitude complete one orbit in exactly 24 hours, so they remain above the same point on Earth's equator - perfect for communication satellites!