Trigonometric Substitution

Using trig identities to simplify difficult integrals

🔺 Trigonometric Substitution

The Problem

How do we integrate expressions with square roots like a2x2\sqrt{a^2 - x^2}, a2+x2\sqrt{a^2 + x^2}, or x2a2\sqrt{x^2 - a^2}?

Example: 14x2dx\int \frac{1}{\sqrt{4-x^2}}\,dx

💡 Key Idea: Use trig substitutions to eliminate the square root using Pythagorean identities!


The Three Cases

Case 1: a2x2\sqrt{a^2 - x^2}

Substitution: x=asinθx = a\sin\theta

Why: a2x2=a2a2sin2θ=a2(1sin2θ)=a2cos2θa^2 - x^2 = a^2 - a^2\sin^2\theta = a^2(1 - \sin^2\theta) = a^2\cos^2\theta

Then: a2x2=acosθ\sqrt{a^2 - x^2} = a\cos\theta (assuming cosθ>0\cos\theta > 0)

Also: dx=acosθdθdx = a\cos\theta\,d\theta


Case 2: a2+x2\sqrt{a^2 + x^2}

Substitution: x=atanθx = a\tan\theta

Why: a2+x2=a2+a2tan2θ=a2(1+tan2θ)=a2sec2θa^2 + x^2 = a^2 + a^2\tan^2\theta = a^2(1 + \tan^2\theta) = a^2\sec^2\theta

Then: a2+x2=asecθ\sqrt{a^2 + x^2} = a\sec\theta (assuming secθ>0\sec\theta > 0)

Also: dx=asec2θdθdx = a\sec^2\theta\,d\theta


Case 3: x2a2\sqrt{x^2 - a^2}

Substitution: x=asecθx = a\sec\theta

Why: x2a2=a2sec2θa2=a2(sec2θ1)=a2tan2θx^2 - a^2 = a^2\sec^2\theta - a^2 = a^2(\sec^2\theta - 1) = a^2\tan^2\theta

Then: x2a2=atanθ\sqrt{x^2 - a^2} = a\tan\theta (assuming tanθ>0\tan\theta > 0)

Also: dx=asecθtanθdθdx = a\sec\theta\tan\theta\,d\theta


Quick Reference Table

| Expression | Substitution | Identity Used | Result | |------------|-------------|---------------|--------| | a2x2\sqrt{a^2 - x^2} | x=asinθx = a\sin\theta | cos2θ=1sin2θ\cos^2\theta = 1 - \sin^2\theta | acosθa\cos\theta | | a2+x2\sqrt{a^2 + x^2} | x=atanθx = a\tan\theta | sec2θ=1+tan2θ\sec^2\theta = 1 + \tan^2\theta | asecθa\sec\theta | | x2a2\sqrt{x^2 - a^2} | x=asecθx = a\sec\theta | tan2θ=sec2θ1\tan^2\theta = \sec^2\theta - 1 | atanθa\tan\theta |


Example 1: Case 1 - a2x2\sqrt{a^2 - x^2}

Evaluate 14x2dx\int \frac{1}{\sqrt{4-x^2}}\,dx

Step 1: Identify the form

4x2=22x2\sqrt{4-x^2} = \sqrt{2^2 - x^2}, so a=2a = 2

This is Case 1!


Step 2: Make substitution

Let x=2sinθx = 2\sin\theta

Then dx=2cosθdθdx = 2\cos\theta\,d\theta

And 4x2=44sin2θ=21sin2θ=2cosθ\sqrt{4-x^2} = \sqrt{4 - 4\sin^2\theta} = 2\sqrt{1-\sin^2\theta} = 2\cos\theta


Step 3: Rewrite integral

14x2dx=12cosθ2cosθdθ\int \frac{1}{\sqrt{4-x^2}}\,dx = \int \frac{1}{2\cos\theta} \cdot 2\cos\theta\,d\theta

=1dθ=θ+C= \int 1\,d\theta = \theta + C


Step 4: Convert back to x

From x=2sinθx = 2\sin\theta, we get sinθ=x2\sin\theta = \frac{x}{2}

Therefore θ=arcsin(x2)\theta = \arcsin\left(\frac{x}{2}\right)

Answer: arcsin(x2)+C\arcsin\left(\frac{x}{2}\right) + C


Example 2: Case 2 - a2+x2\sqrt{a^2 + x^2}

Evaluate x21+x2dx\int \frac{x^2}{\sqrt{1+x^2}}\,dx

Step 1: Identify the form

1+x2=12+x2\sqrt{1+x^2} = \sqrt{1^2 + x^2}, so a=1a = 1

This is Case 2!


Step 2: Make substitution

Let x=tanθx = \tan\theta

Then dx=sec2θdθdx = \sec^2\theta\,d\theta

And 1+x2=1+tan2θ=secθ\sqrt{1+x^2} = \sqrt{1 + \tan^2\theta} = \sec\theta


Step 3: Rewrite integral

x21+x2dx=tan2θsecθsec2θdθ\int \frac{x^2}{\sqrt{1+x^2}}\,dx = \int \frac{\tan^2\theta}{\sec\theta} \cdot \sec^2\theta\,d\theta

=tan2θsecθdθ= \int \tan^2\theta \cdot \sec\theta\,d\theta


Step 4: Use identity tan2θ=sec2θ1\tan^2\theta = \sec^2\theta - 1

=(sec2θ1)secθdθ= \int (\sec^2\theta - 1)\sec\theta\,d\theta

=(sec3θsecθ)dθ= \int (\sec^3\theta - \sec\theta)\,d\theta


Step 5: Integrate

These are standard integrals (using integration by parts for sec3θ\sec^3\theta):

sec3θdθ=12(secθtanθ+lnsecθ+tanθ)+C\int \sec^3\theta\,d\theta = \frac{1}{2}(\sec\theta\tan\theta + \ln|\sec\theta + \tan\theta|) + C

secθdθ=lnsecθ+tanθ+C\int \sec\theta\,d\theta = \ln|\sec\theta + \tan\theta| + C

=12secθtanθ+12lnsecθ+tanθlnsecθ+tanθ+C= \frac{1}{2}\sec\theta\tan\theta + \frac{1}{2}\ln|\sec\theta + \tan\theta| - \ln|\sec\theta + \tan\theta| + C

=12secθtanθ12lnsecθ+tanθ+C= \frac{1}{2}\sec\theta\tan\theta - \frac{1}{2}\ln|\sec\theta + \tan\theta| + C


Step 6: Convert back to x

From x=tanθx = \tan\theta:

  • tanθ=x\tan\theta = x
  • secθ=1+x2\sec\theta = \sqrt{1+x^2}

=121+x2x12ln1+x2+x+C= \frac{1}{2}\sqrt{1+x^2} \cdot x - \frac{1}{2}\ln|\sqrt{1+x^2} + x| + C

Answer: x1+x2212ln1+x2+x+C\frac{x\sqrt{1+x^2}}{2} - \frac{1}{2}\ln|\sqrt{1+x^2} + x| + C


Example 3: Case 3 - x2a2\sqrt{x^2 - a^2}

Evaluate x29dx\int \sqrt{x^2 - 9}\,dx

Step 1: Identify the form

x29=x232\sqrt{x^2 - 9} = \sqrt{x^2 - 3^2}, so a=3a = 3

This is Case 3!


Step 2: Make substitution

Let x=3secθx = 3\sec\theta

Then dx=3secθtanθdθdx = 3\sec\theta\tan\theta\,d\theta

And x29=9sec2θ9=3sec2θ1=3tanθ\sqrt{x^2-9} = \sqrt{9\sec^2\theta - 9} = 3\sqrt{\sec^2\theta - 1} = 3\tan\theta


Step 3: Rewrite integral

x29dx=3tanθ3secθtanθdθ\int \sqrt{x^2-9}\,dx = \int 3\tan\theta \cdot 3\sec\theta\tan\theta\,d\theta

=9tan2θsecθdθ= 9\int \tan^2\theta\sec\theta\,d\theta

This is the same type as Example 2!

=9(sec2θ1)secθdθ= 9\int (\sec^2\theta - 1)\sec\theta\,d\theta

=9[12secθtanθ12lnsecθ+tanθ]+C= 9\left[\frac{1}{2}\sec\theta\tan\theta - \frac{1}{2}\ln|\sec\theta + \tan\theta|\right] + C


Step 4: Convert back to x

From x=3secθx = 3\sec\theta:

  • secθ=x3\sec\theta = \frac{x}{3}
  • tanθ=sec2θ1=x291=x293\tan\theta = \sqrt{\sec^2\theta - 1} = \sqrt{\frac{x^2}{9} - 1} = \frac{\sqrt{x^2-9}}{3}

=92x3x29392lnx3+x293+C= \frac{9}{2} \cdot \frac{x}{3} \cdot \frac{\sqrt{x^2-9}}{3} - \frac{9}{2}\ln\left|\frac{x}{3} + \frac{\sqrt{x^2-9}}{3}\right| + C

=xx29292lnx+x293+C= \frac{x\sqrt{x^2-9}}{2} - \frac{9}{2}\ln\left|\frac{x + \sqrt{x^2-9}}{3}\right| + C

Answer: xx29292lnx+x29+C\frac{x\sqrt{x^2-9}}{2} - \frac{9}{2}\ln|x + \sqrt{x^2-9}| + C' (absorbing constants into C)


Drawing the Reference Triangle

To convert back from θ\theta to xx, draw a reference triangle!

For x=asinθx = a\sin\theta:

Triangle with:

  • Opposite = xx
  • Hypotenuse = aa
  • Adjacent = a2x2\sqrt{a^2 - x^2}

Then: cosθ=a2x2a\cos\theta = \frac{\sqrt{a^2-x^2}}{a}, tanθ=xa2x2\tan\theta = \frac{x}{\sqrt{a^2-x^2}}


For x=atanθx = a\tan\theta:

Triangle with:

  • Opposite = xx
  • Adjacent = aa
  • Hypotenuse = a2+x2\sqrt{a^2 + x^2}

Then: sinθ=xa2+x2\sin\theta = \frac{x}{\sqrt{a^2+x^2}}, secθ=a2+x2a\sec\theta = \frac{\sqrt{a^2+x^2}}{a}


For x=asecθx = a\sec\theta:

Triangle with:

  • Hypotenuse = xx
  • Adjacent = aa
  • Opposite = x2a2\sqrt{x^2 - a^2}

Then: tanθ=x2a2a\tan\theta = \frac{\sqrt{x^2-a^2}}{a}, sinθ=x2a2x\sin\theta = \frac{\sqrt{x^2-a^2}}{x}


When to Use Trig Substitution

Use when you see:

  1. a2x2\sqrt{a^2 - x^2} or (a2x2)n/2(a^2 - x^2)^{n/2}
  2. a2+x2\sqrt{a^2 + x^2} or (a2+x2)n/2(a^2 + x^2)^{n/2}
  3. x2a2\sqrt{x^2 - a^2} or (x2a2)n/2(x^2 - a^2)^{n/2}

Don't use when:

  • Regular u-substitution works
  • The expression can be simplified algebraically first
  • Integration by parts is simpler

⚠️ Common Mistakes

Mistake 1: Wrong Substitution

4+x2\sqrt{4 + x^2} → Use x=2tanθx = 2\tan\theta, NOT x=2sinθx = 2\sin\theta!

Match the pattern carefully!


Mistake 2: Forgetting to Convert Back

Your final answer must be in terms of x, not θ\theta!

Use the reference triangle or inverse trig functions.


Mistake 3: Sign Errors

When taking square roots: cos2θ=cosθ\sqrt{\cos^2\theta} = |\cos\theta|

Usually we assume the appropriate range for θ\theta where the trig function is positive.


Mistake 4: Forgetting dx

When substituting x=asinθx = a\sin\theta, don't forget: dx=acosθdθdx = a\cos\theta\,d\theta


Completing the Square First

Sometimes you need to complete the square before using trig substitution!

Example: 12xx2dx\int \frac{1}{\sqrt{2x - x^2}}\,dx

Complete the square: 2xx2=(x22x)=(x22x+11)=(x1)2+1=1(x1)22x - x^2 = -(x^2 - 2x) = -(x^2 - 2x + 1 - 1) = -(x-1)^2 + 1 = 1 - (x-1)^2

Now it's in the form a2u2a^2 - u^2 with u=x1u = x-1 and a=1a = 1.


Standard Trig Integrals to Know

secθdθ=lnsecθ+tanθ+C\int \sec\theta\,d\theta = \ln|\sec\theta + \tan\theta| + C

sec2θdθ=tanθ+C\int \sec^2\theta\,d\theta = \tan\theta + C

sec3θdθ=12(secθtanθ+lnsecθ+tanθ)+C\int \sec^3\theta\,d\theta = \frac{1}{2}(\sec\theta\tan\theta + \ln|\sec\theta + \tan\theta|) + C

tanθdθ=lncosθ+C=lnsecθ+C\int \tan\theta\,d\theta = -\ln|\cos\theta| + C = \ln|\sec\theta| + C


📝 Practice Strategy

  1. Identify the pattern: a2x2a^2 - x^2, a2+x2a^2 + x^2, or x2a2x^2 - a^2
  2. Complete the square if necessary
  3. Choose substitution from the table
  4. Calculate dx (derivative of substitution)
  5. Simplify the square root using Pythagorean identity
  6. Integrate with respect to θ\theta
  7. Draw reference triangle to convert back
  8. Express answer in terms of x

📚 Practice Problems

1Problem 1hard

Question:

Evaluate x29x2dx\int \frac{x^2}{\sqrt{9-x^2}}\,dx using trigonometric substitution.

💡 Show Solution

Step 1: Identify the form

9x2=32x2\sqrt{9-x^2} = \sqrt{3^2 - x^2} → Case 1, use x=3sinθx = 3\sin\theta


Step 2: Make substitution

x=3sinθx = 3\sin\theta, dx=3cosθdθdx = 3\cos\theta\,d\theta

9x2=3cosθ\sqrt{9-x^2} = 3\cos\theta

x2=9sin2θx^2 = 9\sin^2\theta


Step 3: Rewrite integral

x29x2dx=9sin2θ3cosθ3cosθdθ\int \frac{x^2}{\sqrt{9-x^2}}\,dx = \int \frac{9\sin^2\theta}{3\cos\theta} \cdot 3\cos\theta\,d\theta

=9sin2θdθ= \int 9\sin^2\theta\,d\theta


Step 4: Use identity sin2θ=1cos2θ2\sin^2\theta = \frac{1-\cos 2\theta}{2}

=91cos2θ2dθ= 9\int \frac{1-\cos 2\theta}{2}\,d\theta

=92(1cos2θ)dθ= \frac{9}{2}\int (1-\cos 2\theta)\,d\theta

=92(θsin2θ2)+C= \frac{9}{2}\left(\theta - \frac{\sin 2\theta}{2}\right) + C

=9θ29sin2θ4+C= \frac{9\theta}{2} - \frac{9\sin 2\theta}{4} + C


Step 5: Use sin2θ=2sinθcosθ\sin 2\theta = 2\sin\theta\cos\theta

=9θ29(2sinθcosθ)4+C= \frac{9\theta}{2} - \frac{9(2\sin\theta\cos\theta)}{4} + C

=9θ29sinθcosθ2+C= \frac{9\theta}{2} - \frac{9\sin\theta\cos\theta}{2} + C


Step 6: Convert back to x

From x=3sinθx = 3\sin\theta: sinθ=x3\sin\theta = \frac{x}{3}, θ=arcsinx3\theta = \arcsin\frac{x}{3}

cosθ=9x23\cos\theta = \frac{\sqrt{9-x^2}}{3}

=92arcsinx392x39x23+C= \frac{9}{2}\arcsin\frac{x}{3} - \frac{9}{2} \cdot \frac{x}{3} \cdot \frac{\sqrt{9-x^2}}{3} + C

=92arcsinx3x9x22+C= \frac{9}{2}\arcsin\frac{x}{3} - \frac{x\sqrt{9-x^2}}{2} + C

Answer: 92arcsinx3x9x22+C\frac{9}{2}\arcsin\frac{x}{3} - \frac{x\sqrt{9-x^2}}{2} + C

2Problem 2expert

Question:

Evaluate dx(x2+1)2\int \frac{dx}{(x^2+1)^2} using trigonometric substitution.

💡 Show Solution

Step 1: Identify the form

x2+1=x2+12x^2 + 1 = x^2 + 1^2 → Case 2, use x=tanθx = \tan\theta


Step 2: Make substitution

x=tanθx = \tan\theta, dx=sec2θdθdx = \sec^2\theta\,d\theta

x2+1=tan2θ+1=sec2θx^2 + 1 = \tan^2\theta + 1 = \sec^2\theta

(x2+1)2=sec4θ(x^2+1)^2 = \sec^4\theta


Step 3: Rewrite integral

dx(x2+1)2=sec2θdθsec4θ\int \frac{dx}{(x^2+1)^2} = \int \frac{\sec^2\theta\,d\theta}{\sec^4\theta}

=1sec2θdθ=cos2θdθ= \int \frac{1}{\sec^2\theta}\,d\theta = \int \cos^2\theta\,d\theta


Step 4: Use identity cos2θ=1+cos2θ2\cos^2\theta = \frac{1+\cos 2\theta}{2}

=1+cos2θ2dθ= \int \frac{1+\cos 2\theta}{2}\,d\theta

=12(θ+sin2θ2)+C= \frac{1}{2}\left(\theta + \frac{\sin 2\theta}{2}\right) + C

=θ2+sin2θ4+C= \frac{\theta}{2} + \frac{\sin 2\theta}{4} + C


Step 5: Use sin2θ=2sinθcosθ\sin 2\theta = 2\sin\theta\cos\theta

=θ2+2sinθcosθ4+C= \frac{\theta}{2} + \frac{2\sin\theta\cos\theta}{4} + C

=θ2+sinθcosθ2+C= \frac{\theta}{2} + \frac{\sin\theta\cos\theta}{2} + C


Step 6: Convert back to x

From x=tanθx = \tan\theta: θ=arctanx\theta = \arctan x

sinθ=x1+x2\sin\theta = \frac{x}{\sqrt{1+x^2}}, cosθ=11+x2\cos\theta = \frac{1}{\sqrt{1+x^2}}

=arctanx2+12x1+x211+x2+C= \frac{\arctan x}{2} + \frac{1}{2} \cdot \frac{x}{\sqrt{1+x^2}} \cdot \frac{1}{\sqrt{1+x^2}} + C

=arctanx2+x2(1+x2)+C= \frac{\arctan x}{2} + \frac{x}{2(1+x^2)} + C

Answer: arctanx2+x2(1+x2)+C\frac{\arctan x}{2} + \frac{x}{2(1+x^2)} + C

3Problem 3hard

Question:

Evaluate dxxx216\int \frac{dx}{x\sqrt{x^2-16}} using trigonometric substitution.

💡 Show Solution

Step 1: Identify the form

x216=x242\sqrt{x^2-16} = \sqrt{x^2 - 4^2} → Case 3, use x=4secθx = 4\sec\theta


Step 2: Make substitution

x=4secθx = 4\sec\theta, dx=4secθtanθdθdx = 4\sec\theta\tan\theta\,d\theta

x216=16sec2θ16=4tanθ\sqrt{x^2-16} = \sqrt{16\sec^2\theta - 16} = 4\tan\theta


Step 3: Rewrite integral

dxxx216=4secθtanθdθ4secθ4tanθ\int \frac{dx}{x\sqrt{x^2-16}} = \int \frac{4\sec\theta\tan\theta\,d\theta}{4\sec\theta \cdot 4\tan\theta}

=4secθtanθ16secθtanθdθ= \int \frac{4\sec\theta\tan\theta}{16\sec\theta\tan\theta}\,d\theta

=14dθ=θ4+C= \int \frac{1}{4}\,d\theta = \frac{\theta}{4} + C


Step 4: Convert back to x

From x=4secθx = 4\sec\theta: secθ=x4\sec\theta = \frac{x}{4}

θ=arcsecx4\theta = \text{arcsec}\frac{x}{4}

Or equivalently: θ=arccos4x\theta = \arccos\frac{4}{x}

Answer: 14arcsecx4+C\frac{1}{4}\text{arcsec}\frac{x}{4} + C or 14arccos4x+C\frac{1}{4}\arccos\frac{4}{x} + C