🔺 Trigonometric Substitution
The Problem
How do we integrate expressions with square roots like a2−x2, a2+x2, or x2−a2?
Example: ∫4−x21dx
💡 Key Idea: Use trig substitutions to eliminate the square root using Pythagorean identities!
The Three Cases
Case 1: a2−x2
Substitution: x=asinθ
Why: a2−x2=a2−a2sin2θ=a2(1−sin2θ)=a2cos2θ
Then: a2−x2=acosθ (assuming cosθ>0)
Also: dx=acosθdθ
Case 2: a2+x2
Substitution: x=atanθ
Why: a2+x2=a2+a2tan2θ=a2(1+tan2θ)=a2sec2θ
Then: a2+x2=asecθ (assuming secθ>0)
Also: dx=asec2θdθ
Case 3: x2−a2
Substitution: x=asecθ
Why: x2−a2=a2sec2θ−a2=a2(sec2θ−1)=a2tan2θ
Then: x2−a2=atanθ (assuming tanθ>0)
Also: dx=asecθtanθdθ
Quick Reference Table
| Expression | Substitution | Identity Used | Result |
|------------|-------------|---------------|--------|
| a2−x2 | x=asinθ | cos2θ=1−sin2θ | acosθ |
| a2+x2 | x=atanθ | sec2θ=1+tan2θ | asecθ |
| x2−a2 | x=asecθ | tan2θ=sec2θ−1 | atanθ |
Example 1: Case 1 - a2−x2
Evaluate ∫4−x21dx
Step 1: Identify the form
4−x2=22−x2, so a=2
This is Case 1!
Step 2: Make substitution
Let x=2sinθ
Then dx=2cosθdθ
And 4−x2=4−4sin2θ=21−sin2θ=2cosθ
Step 3: Rewrite integral
∫4−x21dx=∫2cosθ1⋅2cosθdθ
=∫1dθ=θ+C
Step 4: Convert back to x
From x=2sinθ, we get sinθ=2x
Therefore θ=arcsin(2x)
Answer: arcsin(2x)+C
Example 2: Case 2 - a2+x2
Evaluate ∫1+x2x2dx
Step 1: Identify the form
1+x2=12+x2, so a=1
This is Case 2!
Step 2: Make substitution
Let x=tanθ
Then dx=sec2θdθ
And 1+x2=1+tan2θ=secθ
Step 3: Rewrite integral
∫1+x2x2dx=∫secθtan2θ⋅sec2θdθ
=∫tan2θ⋅secθdθ
Step 4: Use identity tan2θ=sec2θ−1
=∫(sec2θ−1)secθdθ
=∫(sec3θ−secθ)dθ
Step 5: Integrate
These are standard integrals (using integration by parts for sec3θ):
∫sec3θdθ=21(secθtanθ+ln∣secθ+tanθ∣)+C
∫secθdθ=ln∣secθ+tanθ∣+C
=21secθtanθ+21ln∣secθ+tanθ∣−ln∣secθ+tanθ∣+C
=21secθtanθ−21ln∣secθ+tanθ∣+C
Step 6: Convert back to x
From x=tanθ:
- tanθ=x
- secθ=1+x2
=211+x2⋅x−21ln∣1+x2+x∣+C
Answer: 2x1+x2−21ln∣1+x2+x∣+C
Example 3: Case 3 - x2−a2
Evaluate ∫x2−9dx
Step 1: Identify the form
x2−9=x2−32, so a=3
This is Case 3!
Step 2: Make substitution
Let x=3secθ
Then dx=3secθtanθdθ
And x2−9=9sec2θ−9=3sec2θ−1=3tanθ
Step 3: Rewrite integral
∫x2−9dx=∫3tanθ⋅3secθtanθdθ
=9∫tan2θsecθdθ
This is the same type as Example 2!
=9∫(sec2θ−1)secθdθ
=9[21secθtanθ−21ln∣secθ+tanθ∣]+C
Step 4: Convert back to x
From x=3secθ:
- secθ=3x
- tanθ=sec2θ−1=9x2−1=3x2−9
=29⋅3x⋅3x2−9−29ln3x+3x2−9+C
=2xx2−9−29ln3x+x2−9+C
Answer: 2xx2−9−29ln∣x+x2−9∣+C′ (absorbing constants into C)
Drawing the Reference Triangle
To convert back from θ to x, draw a reference triangle!
For x=asinθ:
Triangle with:
- Opposite = x
- Hypotenuse = a
- Adjacent = a2−x2
Then: cosθ=aa2−x2, tanθ=a2−x2x
For x=atanθ:
Triangle with:
- Opposite = x
- Adjacent = a
- Hypotenuse = a2+x2
Then: sinθ=a2+x2x, secθ=aa2+x2
For x=asecθ:
Triangle with:
- Hypotenuse = x
- Adjacent = a
- Opposite = x2−a2
Then: tanθ=ax2−a2, sinθ=xx2−a2
When to Use Trig Substitution
Use when you see:
- a2−x2 or (a2−x2)n/2
- a2+x2 or (a2+x2)n/2
- x2−a2 or (x2−a2)n/2
Don't use when:
- Regular u-substitution works
- The expression can be simplified algebraically first
- Integration by parts is simpler
⚠️ Common Mistakes
Mistake 1: Wrong Substitution
4+x2 → Use x=2tanθ, NOT x=2sinθ!
Match the pattern carefully!
Mistake 2: Forgetting to Convert Back
Your final answer must be in terms of x, not θ!
Use the reference triangle or inverse trig functions.
Mistake 3: Sign Errors
When taking square roots:
cos2θ=∣cosθ∣
Usually we assume the appropriate range for θ where the trig function is positive.
Mistake 4: Forgetting dx
When substituting x=asinθ, don't forget:
dx=acosθdθ
Completing the Square First
Sometimes you need to complete the square before using trig substitution!
Example: ∫2x−x21dx
Complete the square:
2x−x2=−(x2−2x)=−(x2−2x+1−1)=−(x−1)2+1=1−(x−1)2
Now it's in the form a2−u2 with u=x−1 and a=1.
Standard Trig Integrals to Know
∫secθdθ=ln∣secθ+tanθ∣+C
∫sec2θdθ=tanθ+C
∫sec3θdθ=21(secθtanθ+ln∣secθ+tanθ∣)+C
∫tanθdθ=−ln∣cosθ∣+C=ln∣secθ∣+C
📝 Practice Strategy
- Identify the pattern: a2−x2, a2+x2, or x2−a2
- Complete the square if necessary
- Choose substitution from the table
- Calculate dx (derivative of substitution)
- Simplify the square root using Pythagorean identity
- Integrate with respect to θ
- Draw reference triangle to convert back
- Express answer in terms of x