Stoichiometry and Limiting Reactants

Master stoichiometric calculations, mole ratios, limiting reactants, theoretical yield, percent yield, and solution stoichiometry.

Stoichiometry and Limiting Reactants

Introduction to Stoichiometry

Stoichiometry: The quantitative study of reactants and products in chemical reactions

From Greek:

  • stoicheion = "element"
  • metron = "measure"

What stoichiometry tells us:

  • How much product forms from given reactants
  • How much reactant needed to make desired product
  • Which reactant limits the reaction
  • Theoretical vs. actual yield

Foundation: Balanced chemical equations

Mole Ratios from Balanced Equations

Balanced equation provides mole ratios

Example:

\ceN2(g)+3H2(g)>2NH3(g)\ce{N2(g) + 3H2(g) -> 2NH3(g)}

Mole ratios:

  • 1 mol N₂ : 3 mol H₂
  • 1 mol N₂ : 2 mol NH₃
  • 3 mol H₂ : 2 mol NH₃

These ratios are exact (not measured)

  • Can have infinite sig figs
  • Used as conversion factors

Interpretation:

  • 1 mole of N₂ reacts with 3 moles of H₂
  • 1 mole of N₂ produces 2 moles of NH₃
  • 3 moles of H₂ produce 2 moles of NH₃

Key concept: Coefficients give mole-to-mole relationships

Basic Stoichiometry Calculations

Mass-to-Mass Calculations

Problem type: Given mass of reactant, find mass of product

General strategy:

Mass A÷ Molar massMoles AMole ratioMoles B× Molar massMass B\text{Mass A} \xrightarrow{\text{÷ Molar mass}} \text{Moles A} \xrightarrow{\text{Mole ratio}} \text{Moles B} \xrightarrow{\text{× Molar mass}} \text{Mass B}

Example:

How many grams of NH₃ can be produced from 28.0 g of N₂?

\ceN2+3H2>2NH3\ce{N2 + 3H2 -> 2NH3}

Step 1: Convert mass N₂ to moles

nN2=28.0 g28.0 g/mol=1.00 mol N2n_{N_2} = \frac{28.0 \text{ g}}{28.0 \text{ g/mol}} = 1.00 \text{ mol N}_2

Step 2: Use mole ratio to find moles NH₃

nNH3=1.00 mol N2×2 mol NH31 mol N2=2.00 mol NH3n_{NH_3} = 1.00 \text{ mol N}_2 \times \frac{2 \text{ mol NH}_3}{1 \text{ mol N}_2} = 2.00 \text{ mol NH}_3

Step 3: Convert moles NH₃ to mass

massNH3=2.00 mol×17.0 g/mol=34.0 g\text{mass}_{NH_3} = 2.00 \text{ mol} \times 17.0 \text{ g/mol} = 34.0 \text{ g}

Answer: 34.0 g NH₃

Mole-to-Mole Calculations

Simplest type: Already have moles

Example:

How many moles of O₂ needed to react with 5.0 mol glucose?

\ceC6H12O6+6O2>6CO2+6H2O\ce{C6H12O6 + 6O2 -> 6CO2 + 6H2O}

Solution:

nO2=5.0 mol C6H12O6×6 mol O21 mol C6H12O6=30 mol O2n_{O_2} = 5.0 \text{ mol C}_6\text{H}_{12}\text{O}_6 \times \frac{6 \text{ mol O}_2}{1 \text{ mol C}_6\text{H}_{12}\text{O}_6} = 30 \text{ mol O}_2

Answer: 30 mol O₂

Mass-to-Particles Calculations

Use Avogadro's number: NA=6.022×1023N_A = 6.022 \times 10^{23} particles/mol

Example:

How many molecules of H₂O form from 9.0 g H₂?

\ce2H2+O2>2H2O\ce{2H2 + O2 -> 2H2O}

Step 1: Moles H₂

nH2=9.0 g2.0 g/mol=4.5 moln_{H_2} = \frac{9.0 \text{ g}}{2.0 \text{ g/mol}} = 4.5 \text{ mol}

Step 2: Moles H₂O

nH2O=4.5 mol H2×2 mol H2O2 mol H2=4.5 moln_{H_2O} = 4.5 \text{ mol H}_2 \times \frac{2 \text{ mol H}_2\text{O}}{2 \text{ mol H}_2} = 4.5 \text{ mol}

Step 3: Convert to molecules

N=4.5 mol×6.022×1023 molecules/mol=2.7×1024 moleculesN = 4.5 \text{ mol} \times 6.022 \times 10^{23} \text{ molecules/mol} = 2.7 \times 10^{24} \text{ molecules}

Answer: 2.7×10242.7 \times 10^{24} molecules H₂O

Limiting Reactants

Limiting reactant: Reactant that is completely consumed first, limiting the amount of product

Excess reactant: Reactant that remains after the reaction stops

Analogy: Making sandwiches

  • 10 slices bread + 6 slices cheese
  • 1 sandwich needs 2 bread + 1 cheese
  • Can make only 5 sandwiches (limited by bread)
  • Bread = limiting reactant
  • Cheese = excess (1 slice left over)

Identifying Limiting Reactant

Method 1: Calculate product from each reactant

Compare: Which reactant produces less product?

  • That reactant is limiting

Example:

\ce2Al+3Cl2>2AlCl3\ce{2Al + 3Cl2 -> 2AlCl3}

Given: 5.0 mol Al and 6.0 mol Cl₂

From Al:

nAlCl3=5.0 mol Al×2 mol AlCl32 mol Al=5.0 mol AlCl3n_{AlCl_3} = 5.0 \text{ mol Al} \times \frac{2 \text{ mol AlCl}_3}{2 \text{ mol Al}} = 5.0 \text{ mol AlCl}_3

From Cl₂:

nAlCl3=6.0 mol Cl2×2 mol AlCl33 mol Cl2=4.0 mol AlCl3n_{AlCl_3} = 6.0 \text{ mol Cl}_2 \times \frac{2 \text{ mol AlCl}_3}{3 \text{ mol Cl}_2} = 4.0 \text{ mol AlCl}_3

Cl₂ produces less product → Cl₂ is limiting reactant

Al is in excess

Actual product formed: 4.0 mol AlCl₃ (limited by Cl₂)

Method 2: Compare mole ratios

Calculate: moles availablecoefficient\frac{\text{moles available}}{\text{coefficient}} for each reactant

Smallest ratio → limiting reactant

Example (same reaction):

\ce2Al+3Cl2>2AlCl3\ce{2Al + 3Cl2 -> 2AlCl3}

Given: 5.0 mol Al and 6.0 mol Cl₂

For Al:

5.0 mol2=2.5\frac{5.0 \text{ mol}}{2} = 2.5

For Cl₂:

6.0 mol3=2.0\frac{6.0 \text{ mol}}{3} = 2.0

Cl₂ has smaller ratio → Cl₂ is limiting

Method 3: Calculate how much of one reactant is needed

Calculate: How much of reactant B is needed to react with all of reactant A?

Compare: Available B vs. needed B

  • If available < needed → B is limiting
  • If available > needed → A is limiting

Example (same reaction):

Given: 5.0 mol Al and 6.0 mol Cl₂

How much Cl₂ needed for all 5.0 mol Al?

nCl2 needed=5.0 mol Al×3 mol Cl22 mol Al=7.5 mol Cl2n_{Cl_2 \text{ needed}} = 5.0 \text{ mol Al} \times \frac{3 \text{ mol Cl}_2}{2 \text{ mol Al}} = 7.5 \text{ mol Cl}_2

Available Cl₂: 6.0 mol Needed Cl₂: 7.5 mol

6.0 < 7.5 → Not enough Cl₂ → Cl₂ is limiting

Calculating Excess Reactant Remaining

After reaction, how much excess reactant left?

Strategy:

  1. Use limiting reactant to find how much excess reactant consumed
  2. Subtract consumed from initial amount

Example:

\ce2Al+3Cl2>2AlCl3\ce{2Al + 3Cl2 -> 2AlCl3}

Given: 5.0 mol Al, 6.0 mol Cl₂ (Cl₂ is limiting)

How much Al remains?

Step 1: How much Al consumed by 6.0 mol Cl₂?

nAl used=6.0 mol Cl2×2 mol Al3 mol Cl2=4.0 mol Aln_{Al \text{ used}} = 6.0 \text{ mol Cl}_2 \times \frac{2 \text{ mol Al}}{3 \text{ mol Cl}_2} = 4.0 \text{ mol Al}

Step 2: Calculate Al remaining

nAl remaining=5.0 mol initial4.0 mol used=1.0 mol Aln_{Al \text{ remaining}} = 5.0 \text{ mol initial} - 4.0 \text{ mol used} = 1.0 \text{ mol Al}

Answer: 1.0 mol Al remains (excess)

Theoretical, Actual, and Percent Yield

Theoretical Yield

Theoretical yield: Maximum amount of product that can form from given reactants

  • Calculated from stoichiometry
  • Assumes 100% efficiency
  • Based on limiting reactant

Always use limiting reactant for theoretical yield!

Actual Yield

Actual yield: Amount of product actually obtained in lab

  • Measured experimentally
  • Always less than theoretical yield
  • Due to side reactions, losses, incomplete reactions

Percent Yield

Percent yield: Efficiency of reaction

Percent yield=actual yieldtheoretical yield×100%\text{Percent yield} = \frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%

Example:

Theoretical yield: 50.0 g product Actual yield: 42.5 g product

Percent yield=42.5 g50.0 g×100%=85.0%\text{Percent yield} = \frac{42.5 \text{ g}}{50.0 \text{ g}} \times 100\% = 85.0\%

Interpretation: Reaction is 85% efficient

Why actual < theoretical?

  1. Side reactions: Reactants form unwanted products
  2. Incomplete reactions: Not all reactants convert to products
  3. Losses during purification: Some product lost in transfer, filtering, etc.
  4. Impure reactants: Starting materials not 100% pure

Percent yield range:

  • 0-100% (cannot exceed 100% with pure products)
  • Good lab technique: 80-95%
  • Industrial processes often optimize for high percent yield

Using Percent Yield

If percent yield known, can calculate actual yield:

Actual yield=percent yield100×theoretical yield\text{Actual yield} = \frac{\text{percent yield}}{100} \times \text{theoretical yield}

Example:

If theoretical yield = 30.0 g and reaction is 75% efficient:

Actual yield=75100×30.0 g=22.5 g\text{Actual yield} = \frac{75}{100} \times 30.0 \text{ g} = 22.5 \text{ g}

Solution Stoichiometry

For reactions in solution, use molarity

Molarity (M):

M=moles soluteliters solutionM = \frac{\text{moles solute}}{\text{liters solution}}

Rearranged:

moles=M×Vliters\text{moles} = M \times V_{\text{liters}}

Strategy for Solution Stoichiometry

Given volumes and molarities, find product:

  1. Calculate moles of each reactant: n=M×Vn = M \times V
  2. Identify limiting reactant
  3. Use stoichiometry to find product moles
  4. Convert to mass (if needed) or molarity (if in solution)

Example:

\ce2AgNO3(aq)+CaCl2(aq)>2AgCl(s)+Ca(NO3)2(aq)\ce{2AgNO3(aq) + CaCl2(aq) -> 2AgCl(s) + Ca(NO3)2(aq)}

Mix 50.0 mL of 0.200 M AgNO₃ with 30.0 mL of 0.100 M CaCl₂

How many grams of AgCl precipitate?

Step 1: Calculate moles of reactants

nAgNO3=0.200 M×0.0500 L=0.0100 moln_{AgNO_3} = 0.200 \text{ M} \times 0.0500 \text{ L} = 0.0100 \text{ mol}

nCaCl2=0.100 M×0.0300 L=0.00300 moln_{CaCl_2} = 0.100 \text{ M} \times 0.0300 \text{ L} = 0.00300 \text{ mol}

Step 2: Identify limiting reactant

From AgNO₃:

nAgCl=0.0100 mol AgNO3×2 mol AgCl2 mol AgNO3=0.0100 moln_{AgCl} = 0.0100 \text{ mol AgNO}_3 \times \frac{2 \text{ mol AgCl}}{2 \text{ mol AgNO}_3} = 0.0100 \text{ mol}

From CaCl₂:

nAgCl=0.00300 mol CaCl2×2 mol AgCl1 mol CaCl2=0.00600 moln_{AgCl} = 0.00300 \text{ mol CaCl}_2 \times \frac{2 \text{ mol AgCl}}{1 \text{ mol CaCl}_2} = 0.00600 \text{ mol}

CaCl₂ produces less → CaCl₂ is limiting

Step 3: Calculate mass of AgCl

mass=0.00600 mol×143.5 g/mol=0.861 g AgCl\text{mass} = 0.00600 \text{ mol} \times 143.5 \text{ g/mol} = 0.861 \text{ g AgCl}

Answer: 0.861 g AgCl precipitates

Consecutive Reactions

Sometimes reactions occur in sequence

Product of first reaction → reactant for second reaction

Example:

\ceS(s)+O2(g)>SO2(g)\ce{S(s) + O2(g) -> SO2(g)} (Reaction 1)

\ce2SO2(g)+O2(g)>2SO3(g)\ce{2SO2(g) + O2(g) -> 2SO3(g)} (Reaction 2)

If given amount of S, find SO₃:

Strategy: Chain the stoichiometry

SReaction 1SO2Reaction 2SO3\text{S} \xrightarrow{\text{Reaction 1}} \text{SO}_2 \xrightarrow{\text{Reaction 2}} \text{SO}_3

Use mole ratios from both equations

Summary of Stoichiometry Steps

General problem-solving strategy:

  1. Write balanced equation

    • Double-check coefficients
  2. Convert given to moles

    • Use molar mass (g → mol)
    • Use molarity × volume (M × L → mol)
    • Use Avogadro's number (particles → mol)
  3. Identify limiting reactant (if multiple reactants given)

    • Calculate product from each reactant
    • Smallest product → that reactant is limiting
    • OR use ratio method
  4. Use mole ratios (from balanced equation)

    • Convert moles of limiting reactant to moles of product
  5. Convert to desired units

    • Mass (mol → g using molar mass)
    • Particles (mol → particles using NAN_A)
    • Volume (if gas at STP: 22.4 L/mol)
    • Molarity (if in solution)
  6. Calculate percent yield (if actual yield given)

    • Compare actual to theoretical

Common Stoichiometry Errors

❌ Mistake 1: Using wrong mole ratio

  • Check coefficients carefully
  • Write ratio as fraction

❌ Mistake 2: Forgetting to identify limiting reactant

  • If given multiple reactants, MUST determine limiting
  • Calculate product from each reactant

❌ Mistake 3: Using excess reactant for calculations

  • Always use limiting reactant for product calculations
  • Excess reactant doesn't limit product

❌ Mistake 4: Rounding too early

  • Keep extra sig figs during calculation
  • Round at final answer

❌ Mistake 5: Unit errors

  • Track units throughout
  • Cancel units properly
  • Convert volumes to liters for molarity

Tips for Success

Always start with balanced equation

Write out conversion factors explicitly

Track units through calculation

For limiting reactant: Calculate product from EACH reactant

Check reasonableness of answer

  • Product mass shouldn't exceed reactant mass (usually)
  • Percent yield can't exceed 100%

Use dimensional analysis

  • Set up so units cancel

For solution problems: V must be in liters for molarity

📚 Practice Problems

1Problem 1medium

Question:

Consider the reaction: 2 Al + 3 Cl₂ → 2 AlCl₃. If 5.40 g of Al reacts with 8.00 g of Cl₂, (a) identify the limiting reactant, (b) calculate the mass of AlCl₃ produced, and (c) determine how much of the excess reactant remains.

💡 Show Solution

Solution:

Molar masses: Al = 26.98 g/mol, Cl₂ = 70.90 g/mol, AlCl₃ = 133.34 g/mol

(a) Identify limiting reactant:

Moles of Al = 5.40 g / 26.98 g/mol = 0.200 mol Moles of Cl₂ = 8.00 g / 70.90 g/mol = 0.113 mol

Using stoichiometry (2 Al : 3 Cl₂):

  • If Al is limiting: needs 0.200 mol Al × (3 Cl₂/2 Al) = 0.300 mol Cl₂ (we only have 0.113) ✗
  • If Cl₂ is limiting: needs 0.113 mol Cl₂ × (2 Al/3 Cl₂) = 0.0753 mol Al (we have 0.200) ✓

Limiting reactant: Cl₂

(b) Mass of AlCl₃ produced: Moles AlCl₃ = 0.113 mol Cl₂ × (2 AlCl₃/3 Cl₂) = 0.0753 mol Mass AlCl₃ = 0.0753 mol × 133.34 g/mol = 10.0 g

(c) Excess Al remaining: Al consumed = 0.113 mol Cl₂ × (2 Al/3 Cl₂) = 0.0753 mol Al remaining = 0.200 - 0.0753 = 0.125 mol = 3.37 g

2Problem 2easy

Question:

Ammonia (NH₃) is produced by the Haber process: N₂(g) + 3H₂(g) → 2NH₃(g). How many grams of NH₃ can be produced from 56.0 g of N₂ and 12.0 g of H₂? (N = 14.0 g/mol, H = 1.0 g/mol)

💡 Show Solution

Solution:

Given:

  • Balanced equation: \ceN2(g)+3H2(g)>2NH3(g)\ce{N2(g) + 3H2(g) -> 2NH3(g)}
  • Mass of N₂ = 56.0 g
  • Mass of H₂ = 12.0 g
  • Molar masses: N = 14.0 g/mol, H = 1.0 g/mol

Find: Mass of NH₃ produced

This is a LIMITING REACTANT problem (two reactants given!)


Step 1: Calculate molar masses

MN2=2×14.0=28.0 g/molM_{N_2} = 2 \times 14.0 = 28.0 \text{ g/mol}

MH2=2×1.0=2.0 g/molM_{H_2} = 2 \times 1.0 = 2.0 \text{ g/mol}

MNH3=14.0+3(1.0)=17.0 g/molM_{NH_3} = 14.0 + 3(1.0) = 17.0 \text{ g/mol}


Step 2: Convert masses to moles

Moles of N₂:

nN2=56.0 g28.0 g/mol=2.00 mol N2n_{N_2} = \frac{56.0 \text{ g}}{28.0 \text{ g/mol}} = 2.00 \text{ mol N}_2

Moles of H₂:

nH2=12.0 g2.0 g/mol=6.0 mol H2n_{H_2} = \frac{12.0 \text{ g}}{2.0 \text{ g/mol}} = 6.0 \text{ mol H}_2


Step 3: Identify limiting reactant

Method: Calculate NH₃ from each reactant, compare

From N₂:

Using mole ratio: 2 mol NH31 mol N2\frac{2 \text{ mol NH}_3}{1 \text{ mol N}_2}

nNH3=2.00 mol N2×2 mol NH31 mol N2=4.00 mol NH3n_{NH_3} = 2.00 \text{ mol N}_2 \times \frac{2 \text{ mol NH}_3}{1 \text{ mol N}_2} = 4.00 \text{ mol NH}_3

From H₂:

Using mole ratio: 2 mol NH33 mol H2\frac{2 \text{ mol NH}_3}{3 \text{ mol H}_2}

nNH3=6.0 mol H2×2 mol NH33 mol H2n_{NH_3} = 6.0 \text{ mol H}_2 \times \frac{2 \text{ mol NH}_3}{3 \text{ mol H}_2}

nNH3=6.0×23=4.0 mol NH3n_{NH_3} = 6.0 \times \frac{2}{3} = 4.0 \text{ mol NH}_3

Compare:

  • From N₂: 4.00 mol NH₃
  • From H₂: 4.0 mol NH₃

Both give same amount!Both are completely consumed (neither in excess)

This is a special case: stoichiometric amounts

Limiting reactant: Both (or can say either)

Product formed: 4.0 mol NH₃


Alternative check - Ratio method:

\ceN2+3H2>2NH3\ce{N2 + 3H2 -> 2NH3}

For N₂: 2.00 mol1=2.00\frac{2.00 \text{ mol}}{1} = 2.00

For H₂: 6.0 mol3=2.0\frac{6.0 \text{ mol}}{3} = 2.0

Ratios equal → Stoichiometric amounts (both limiting) ✓


Step 4: Convert moles NH₃ to mass

massNH3=nNH3×MNH3\text{mass}_{NH_3} = n_{NH_3} \times M_{NH_3}

massNH3=4.0 mol×17.0 g/mol\text{mass}_{NH_3} = 4.0 \text{ mol} \times 17.0 \text{ g/mol}

massNH3=68 g\text{mass}_{NH_3} = 68 \text{ g}

Answer:

68 g NH3\boxed{68 \text{ g NH}_3}


Summary:

| Substance | Given Mass | Moles | NH₃ Produced | |-----------|------------|-------|--------------| | N₂ | 56.0 g | 2.00 mol | 4.00 mol | | H₂ | 12.0 g | 6.0 mol | 4.0 mol | | NH₃ | ? | 4.0 mol | 68 g |

Stoichiometry flow:

56.0 g N2÷28.02.00 mol N2×214.0 mol NH3×17.068 g NH356.0 \text{ g N}_2 \xrightarrow{÷28.0} 2.00 \text{ mol N}_2 \xrightarrow{×\frac{2}{1}} 4.0 \text{ mol NH}_3 \xrightarrow{×17.0} 68 \text{ g NH}_3

Or:

12.0 g H2÷2.06.0 mol H2×234.0 mol NH3×17.068 g NH312.0 \text{ g H}_2 \xrightarrow{÷2.0} 6.0 \text{ mol H}_2 \xrightarrow{×\frac{2}{3}} 4.0 \text{ mol NH}_3 \xrightarrow{×17.0} 68 \text{ g NH}_3


Additional insights:

Why are these stoichiometric amounts?

From balanced equation: \ceN2+3H2>2NH3\ce{N2 + 3H2 -> 2NH3}

Mole ratio: 1 mol N₂ : 3 mol H₂

Given amounts:

  • N₂: 2.00 mol
  • H₂: 6.0 mol

Check ratio: 6.02.00=3\frac{6.0}{2.00} = 3

Exactly 3:1 ratio → Perfect stoichiometric amounts!

No excess reactant remains

In real industrial process:

  • Usually use excess H₂ (cheaper than N₂)
  • Forces equilibrium toward products
  • Not run at stoichiometric ratio

Check conservation of mass:

  • Reactants: 56.0 g + 12.0 g = 68.0 g
  • Products: 68 g NH₃
  • Mass conserved! ✓

This makes sense because all reactants consumed

3Problem 3medium

Question:

Consider the reaction: 2 Al + 3 Cl₂ → 2 AlCl₃. If 5.40 g of Al reacts with 8.00 g of Cl₂, (a) identify the limiting reactant, (b) calculate the mass of AlCl₃ produced, and (c) determine how much of the excess reactant remains.

💡 Show Solution

Solution:

Molar masses: Al = 26.98 g/mol, Cl₂ = 70.90 g/mol, AlCl₃ = 133.34 g/mol

(a) Identify limiting reactant:

Moles of Al = 5.40 g / 26.98 g/mol = 0.200 mol Moles of Cl₂ = 8.00 g / 70.90 g/mol = 0.113 mol

Using stoichiometry (2 Al : 3 Cl₂):

  • If Al is limiting: needs 0.200 mol Al × (3 Cl₂/2 Al) = 0.300 mol Cl₂ (we only have 0.113) ✗
  • If Cl₂ is limiting: needs 0.113 mol Cl₂ × (2 Al/3 Cl₂) = 0.0753 mol Al (we have 0.200) ✓

Limiting reactant: Cl₂

(b) Mass of AlCl₃ produced: Moles AlCl₃ = 0.113 mol Cl₂ × (2 AlCl₃/3 Cl₂) = 0.0753 mol Mass AlCl₃ = 0.0753 mol × 133.34 g/mol = 10.0 g

(c) Excess Al remaining: Al consumed = 0.113 mol Cl₂ × (2 Al/3 Cl₂) = 0.0753 mol Al remaining = 0.200 - 0.0753 = 0.125 mol = 3.37 g

4Problem 4medium

Question:

When 15.0 g of aluminum reacts with excess hydrochloric acid according to the equation 2Al(s) + 6HCl(aq) → 2AlCl₃(aq) + 3H₂(g), 16.8 L of H₂ gas is collected at STP. (a) Calculate the theoretical yield of H₂ in liters at STP. (b) Calculate the percent yield. (Al = 27.0 g/mol)

💡 Show Solution

Solution:

Given:

  • Mass of Al = 15.0 g
  • Equation: \ce2Al(s)+6HCl(aq)>2AlCl3(aq)+3H2(g)\ce{2Al(s) + 6HCl(aq) -> 2AlCl3(aq) + 3H2(g)}
  • HCl in excess (Al is limiting reactant)
  • Actual yield of H₂ = 16.8 L at STP
  • Molar mass Al = 27.0 g/mol
  • At STP: 1 mol gas = 22.4 L

Find: (a) Theoretical yield of H₂, (b) Percent yield


Part (a): Calculate theoretical yield

Step 1: Convert mass Al to moles

nAl=massmolar massn_{Al} = \frac{\text{mass}}{\text{molar mass}}

nAl=15.0 g27.0 g/moln_{Al} = \frac{15.0 \text{ g}}{27.0 \text{ g/mol}}

nAl=0.556 mol Aln_{Al} = 0.556 \text{ mol Al}

Step 2: Use stoichiometry to find moles H₂

From balanced equation:

\ce2Al+6HCl>2AlCl3+3H2\ce{2Al + 6HCl -> 2AlCl3 + 3H2}

Mole ratio: 3 mol H22 mol Al\frac{3 \text{ mol H}_2}{2 \text{ mol Al}}

nH2=0.556 mol Al×3 mol H22 mol Aln_{H_2} = 0.556 \text{ mol Al} \times \frac{3 \text{ mol H}_2}{2 \text{ mol Al}}

nH2=0.556×1.5n_{H_2} = 0.556 \times 1.5

nH2=0.834 mol H2n_{H_2} = 0.834 \text{ mol H}_2

Step 3: Convert moles H₂ to volume at STP

At STP: 1 mol gas = 22.4 L (molar volume)

VH2=nH2×22.4 L/molV_{H_2} = n_{H_2} \times 22.4 \text{ L/mol}

VH2=0.834 mol×22.4 L/molV_{H_2} = 0.834 \text{ mol} \times 22.4 \text{ L/mol}

VH2=18.7 LV_{H_2} = 18.7 \text{ L}

Answer (a):

Theoretical yield=18.7 L H2\boxed{\text{Theoretical yield} = 18.7 \text{ L H}_2}

This is the maximum H₂ that could be produced from 15.0 g Al


Part (b): Calculate percent yield

Step 4: Use percent yield formula

Percent yield=actual yieldtheoretical yield×100%\text{Percent yield} = \frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%

Given:

  • Actual yield = 16.8 L (measured in lab)
  • Theoretical yield = 18.7 L (calculated above)

Calculate:

Percent yield=16.8 L18.7 L×100%\text{Percent yield} = \frac{16.8 \text{ L}}{18.7 \text{ L}} \times 100\%

Percent yield=0.898×100%\text{Percent yield} = 0.898 \times 100\%

Percent yield=89.8%\text{Percent yield} = 89.8\%

Answer (b):

Percent yield=89.8%\boxed{\text{Percent yield} = 89.8\%}

Or: 90%\boxed{90\%} (2 sig figs)


Interpretation:

What does 89.8% yield mean?

  • Reaction produced 89.8% of theoretical maximum
  • This is actually quite good efficiency for lab reaction
  • 10.2% of potential H₂ not collected

Why is actual < theoretical?

Possible reasons:

  1. Gas escaped during collection

    • Not all H₂ captured in collection apparatus
    • Small leaks in setup
  2. Incomplete reaction

    • Not all Al dissolved
    • Oxide coating on Al surface prevents complete reaction
  3. Impure aluminum

    • Al sample may contain impurities
    • Less than 15.0 g pure Al actually present
  4. Measurement errors

    • Volume measurement not exact
    • Temperature or pressure not exactly STP
  5. Side reactions

    • Some Al reacts with O₂ in air instead of HCl

In industrial processes:

  • 89.8% would be excellent yield
  • Industries optimize conditions for high percent yield
  • Economic motivation (more product per reactant)

Summary of calculations:

Stoichiometry path:

15.0 g Al÷27.00.556 mol Al×320.834 mol H2×22.418.7 L H215.0 \text{ g Al} \xrightarrow{÷27.0} 0.556 \text{ mol Al} \xrightarrow{×\frac{3}{2}} 0.834 \text{ mol H}_2 \xrightarrow{×22.4} 18.7 \text{ L H}_2

Percent yield:

16.8 L (actual)18.7 L (theoretical)×100%=89.8%\frac{16.8 \text{ L (actual)}}{18.7 \text{ L (theoretical)}} \times 100\% = 89.8\%

Comparison table:

| Quantity | Value | |----------|-------| | Mass Al (given) | 15.0 g | | Moles Al | 0.556 mol | | Moles H₂ (from stoichiometry) | 0.834 mol | | Theoretical yield H₂ | 18.7 L | | Actual yield H₂ (given) | 16.8 L | | Percent yield | 89.8% |


Additional practice:

What if we wanted mass of H₂ instead of volume?

massH2=0.834 mol×2.0 g/mol=1.67 g H2\text{mass}_{H_2} = 0.834 \text{ mol} \times 2.0 \text{ g/mol} = 1.67 \text{ g H}_2 (theoretical)

massH2 actual=1.67 g×0.898=1.50 g\text{mass}_{H_2 \text{ actual}} = 1.67 \text{ g} \times 0.898 = 1.50 \text{ g} (actual)

Or from volume:

At STP: 22.4 L H₂ = 2.0 g H₂

18.7 L×2.0 g22.4 L=1.67 g18.7 \text{ L} \times \frac{2.0 \text{ g}}{22.4 \text{ L}} = 1.67 \text{ g}

Key concepts demonstrated:

  1. Stoichiometry with limiting reactant
  2. Gas volume at STP (molar volume = 22.4 L/mol)
  3. Theoretical yield calculation
  4. Percent yield formula and interpretation
  5. Understanding why actual < theoretical

5Problem 5hard

Question:

Aspirin (C₉H₈O₄) is synthesized from salicylic acid (C₇H₆O₃) and acetic anhydride (C₄H₆O₃): C₇H₆O₃ + C₄H₆O₃ → C₉H₈O₄ + C₂H₄O₂. If 20.0 g of salicylic acid reacts with 15.0 g of acetic anhydride and produces 18.5 g of aspirin, calculate the percent yield.

💡 Show Solution

Solution:

Molar masses:

  • C₇H₆O₃ (salicylic acid) = 138.12 g/mol
  • C₄H₆O₃ (acetic anhydride) = 102.09 g/mol
  • C₉H₈O₄ (aspirin) = 180.16 g/mol

Step 1: Find limiting reactant

Moles salicylic acid = 20.0 g / 138.12 g/mol = 0.145 mol Moles acetic anhydride = 15.0 g / 102.09 g/mol = 0.147 mol

Stoichiometry is 1:1, so we have nearly equal moles, but salicylic acid (0.145 mol) is slightly less.

Limiting reactant: Salicylic acid

Step 2: Theoretical yield Since stoichiometry is 1:1:1:1, moles of aspirin = 0.145 mol

Theoretical mass = 0.145 mol × 180.16 g/mol = 26.1 g

Step 3: Percent yield Actual yield = 18.5 g Percent yield = (actual/theoretical) × 100% Percent yield = (18.5 g / 26.1 g) × 100% = 70.9%

6Problem 6hard

Question:

Aspirin (C₉H₈O₄) is synthesized from salicylic acid (C₇H₆O₃) and acetic anhydride (C₄H₆O₃): C₇H₆O₃ + C₄H₆O₃ → C₉H₈O₄ + C₂H₄O₂. If 20.0 g of salicylic acid reacts with 15.0 g of acetic anhydride and produces 18.5 g of aspirin, calculate the percent yield.

💡 Show Solution

Solution:

Molar masses:

  • C₇H₆O₃ (salicylic acid) = 138.12 g/mol
  • C₄H₆O₃ (acetic anhydride) = 102.09 g/mol
  • C₉H₈O₄ (aspirin) = 180.16 g/mol

Step 1: Find limiting reactant

Moles salicylic acid = 20.0 g / 138.12 g/mol = 0.145 mol Moles acetic anhydride = 15.0 g / 102.09 g/mol = 0.147 mol

Stoichiometry is 1:1, so we have nearly equal moles, but salicylic acid (0.145 mol) is slightly less.

Limiting reactant: Salicylic acid

Step 2: Theoretical yield Since stoichiometry is 1:1:1:1, moles of aspirin = 0.145 mol

Theoretical mass = 0.145 mol × 180.16 g/mol = 26.1 g

Step 3: Percent yield Actual yield = 18.5 g Percent yield = (actual/theoretical) × 100% Percent yield = (18.5 g / 26.1 g) × 100% = 70.9%

7Problem 7hard

Question:

50.0 mL of 0.200 M Pb(NO₃)₂ is mixed with 30.0 mL of 0.300 M KI. The reaction is: Pb(NO₃)₂(aq) + 2KI(aq) → PbI₂(s) + 2KNO₃(aq). (a) Identify the limiting reactant. (b) Calculate the mass of PbI₂ precipitate formed. (c) Calculate the molar concentration of K⁺ ions in the final solution (assume volumes are additive). (Pb = 207.2 g/mol, I = 126.9 g/mol, K = 39.1 g/mol)

💡 Show Solution

Solution:

Given:

  • Volume Pb(NO₃)₂ = 50.0 mL = 0.0500 L
  • Molarity Pb(NO₃)₂ = 0.200 M
  • Volume KI = 30.0 mL = 0.0300 L
  • Molarity KI = 0.300 M
  • Equation: \cePb(NO3)2(aq)+2KI(aq)>PbI2(s)+2KNO3(aq)\ce{Pb(NO3)2(aq) + 2KI(aq) -> PbI2(s) + 2KNO3(aq)}
  • Molar masses: Pb = 207.2, I = 126.9, K = 39.1 g/mol

Find: (a) Limiting reactant, (b) Mass PbI₂, (c) [K⁺] in final solution


Part (a): Identify limiting reactant

Step 1: Calculate moles of each reactant

Moles of Pb(NO₃)₂:

nPb(NO3)2=M×Vn_{Pb(NO_3)_2} = M \times V

nPb(NO3)2=0.200 M×0.0500 Ln_{Pb(NO_3)_2} = 0.200 \text{ M} \times 0.0500 \text{ L}

nPb(NO3)2=0.0100 moln_{Pb(NO_3)_2} = 0.0100 \text{ mol}

Moles of KI:

nKI=M×Vn_{KI} = M \times V

nKI=0.300 M×0.0300 Ln_{KI} = 0.300 \text{ M} \times 0.0300 \text{ L}

nKI=0.00900 moln_{KI} = 0.00900 \text{ mol}

Step 2: Identify limiting reactant

Method 1: Calculate product from each reactant

From balanced equation:

\cePb(NO3)2+2KI>PbI2+2KNO3\ce{Pb(NO3)2 + 2KI -> PbI2 + 2KNO3}

Mole ratio: 1 Pb(NO₃)₂ : 2 KI : 1 PbI₂

From Pb(NO₃)₂:

nPbI2=0.0100 mol Pb(NO3)2×1 mol PbI21 mol Pb(NO3)2n_{PbI_2} = 0.0100 \text{ mol Pb(NO}_3)_2 \times \frac{1 \text{ mol PbI}_2}{1 \text{ mol Pb(NO}_3)_2}

nPbI2=0.0100 moln_{PbI_2} = 0.0100 \text{ mol}

From KI:

nPbI2=0.00900 mol KI×1 mol PbI22 mol KIn_{PbI_2} = 0.00900 \text{ mol KI} \times \frac{1 \text{ mol PbI}_2}{2 \text{ mol KI}}

nPbI2=0.00450 moln_{PbI_2} = 0.00450 \text{ mol}

Compare:

  • From Pb(NO₃)₂: 0.0100 mol PbI₂
  • From KI: 0.00450 mol PbI₂

KI produces less productKI is limiting reactant

Method 2: Ratio method (verification)

nPb(NO3)2coefficient=0.01001=0.0100\frac{n_{Pb(NO_3)_2}}{\text{coefficient}} = \frac{0.0100}{1} = 0.0100

nKIcoefficient=0.009002=0.00450\frac{n_{KI}}{\text{coefficient}} = \frac{0.00900}{2} = 0.00450

KI has smaller ratioKI is limiting

Answer (a):

KI is the limiting reactant\boxed{\text{KI is the limiting reactant}}

Pb(NO₃)₂ is in excess


Part (b): Calculate mass of PbI₂

Step 3: Calculate moles of PbI₂ formed

Use limiting reactant (KI):

nPbI2=0.00900 mol KI×1 mol PbI22 mol KIn_{PbI_2} = 0.00900 \text{ mol KI} \times \frac{1 \text{ mol PbI}_2}{2 \text{ mol KI}}

nPbI2=0.00450 moln_{PbI_2} = 0.00450 \text{ mol}

Step 4: Calculate molar mass of PbI₂

MPbI2=207.2+2(126.9)M_{PbI_2} = 207.2 + 2(126.9)

MPbI2=207.2+253.8M_{PbI_2} = 207.2 + 253.8

MPbI2=461.0 g/molM_{PbI_2} = 461.0 \text{ g/mol}

Step 5: Convert moles to mass

massPbI2=nPbI2×MPbI2\text{mass}_{PbI_2} = n_{PbI_2} \times M_{PbI_2}

massPbI2=0.00450 mol×461.0 g/mol\text{mass}_{PbI_2} = 0.00450 \text{ mol} \times 461.0 \text{ g/mol}

massPbI2=2.07 g\text{mass}_{PbI_2} = 2.07 \text{ g}

Answer (b):

2.07 g PbI2 precipitates\boxed{2.07 \text{ g PbI}_2 \text{ precipitates}}

This is bright yellow precipitate


Part (c): Calculate [K⁺] in final solution

Step 6: Find total moles of K⁺

K⁺ comes from KI:

  • Each KI provides 1 K⁺
  • Started with 0.00900 mol KI
  • Therefore: 0.00900 mol K⁺ total

Note: All KI dissolves initially (before precipitation)

  • KI → K⁺ + I⁻ (complete dissociation)
  • Then: Pb²⁺ + 2I⁻ → PbI₂(s)
  • K⁺ is spectator ion (stays dissolved)

All K⁺ remains in solution

Step 7: Calculate total volume

Assume volumes are additive:

Vtotal=VPb(NO3)2+VKIV_{total} = V_{Pb(NO_3)_2} + V_{KI}

Vtotal=50.0 mL+30.0 mL=80.0 mLV_{total} = 50.0 \text{ mL} + 30.0 \text{ mL} = 80.0 \text{ mL}

Vtotal=0.0800 LV_{total} = 0.0800 \text{ L}

Step 8: Calculate molarity of K⁺

[K+]=nK+Vtotal[K^+] = \frac{n_{K^+}}{V_{total}}

[K+]=0.00900 mol0.0800 L[K^+] = \frac{0.00900 \text{ mol}}{0.0800 \text{ L}}

[K+]=0.1125 M[K^+] = 0.1125 \text{ M}

[K+]=0.113 M[K^+] = 0.113 \text{ M}

Answer (c):

[K+]=0.113 M\boxed{[K^+] = 0.113 \text{ M}}


Summary Table:

| Species | Initial moles | Final status | |---------|---------------|--------------| | Pb(NO₃)₂ | 0.0100 mol | Excess (some remains) | | KI | 0.00900 mol | Limiting (all consumed) | | PbI₂ | 0 | 0.00450 mol formed (2.07 g solid) | | K⁺ | 0.00900 mol | 0.00900 mol (dissolved, 0.113 M) |


Additional analysis:

How much Pb(NO₃)₂ remains?

Pb(NO₃)₂ consumed:

nPb(NO3)2 used=0.00900 mol KI×1 mol Pb(NO3)22 mol KIn_{Pb(NO_3)_2 \text{ used}} = 0.00900 \text{ mol KI} \times \frac{1 \text{ mol Pb(NO}_3)_2}{2 \text{ mol KI}}

nPb(NO3)2 used=0.00450 moln_{Pb(NO_3)_2 \text{ used}} = 0.00450 \text{ mol}

Pb(NO₃)₂ remaining:

nPb(NO3)2 remaining=0.01000.00450=0.00550 moln_{Pb(NO_3)_2 \text{ remaining}} = 0.0100 - 0.00450 = 0.00550 \text{ mol}

Concentration of Pb²⁺ in final solution:

[Pb2+]=0.00550 mol0.0800 L=0.0688 M[Pb^{2+}] = \frac{0.00550 \text{ mol}}{0.0800 \text{ L}} = 0.0688 \text{ M}

Wait! This ignores PbI₂ solubility equilibrium

  • PbI₂ is "insoluble" but has tiny solubility
  • Some Pb²⁺ and I⁻ in equilibrium with solid
  • For this problem, assume PbI₂ completely insoluble

What about NO₃⁻ concentration?

NO₃⁻ from Pb(NO₃)₂:

  • Each Pb(NO₃)₂ provides 2 NO₃⁻
  • Started with 0.0100 mol Pb(NO₃)₂
  • Total NO₃⁻ = 0.0100 × 2 = 0.0200 mol

NO₃⁻ is spectator ion (stays dissolved)

[NO3]=0.0200 mol0.0800 L=0.250 M[NO_3^-] = \frac{0.0200 \text{ mol}}{0.0800 \text{ L}} = 0.250 \text{ M}

Complete ion inventory in final solution:

| Ion | Concentration | |-----|---------------| | K⁺ | 0.113 M | | NO₃⁻ | 0.250 M | | Pb²⁺ | ~0.069 M (excess) | | I⁻ | ~0 M (consumed) |

Plus: Solid PbI₂ precipitate (2.07 g)


Key concepts demonstrated:

  1. Solution stoichiometry using M × V = n
  2. Limiting reactant determination with multiple reactants
  3. Precipitate formation (PbI₂ is insoluble)
  4. Spectator ions (K⁺ and NO₃⁻ don't react)
  5. Final concentration calculation with mixed volumes
  6. Excess reactant remaining after reaction

Observable evidence:

  • Solutions mixed → immediately bright yellow precipitate forms
  • Yellow solid settles to bottom
  • Clear solution above contains K⁺, NO₃⁻, excess Pb²⁺