Solubility Equilibria and K_sp

Understand solubility product constant (K_sp), predict precipitation, and calculate solubility from K_sp.

Solubility Equilibria and K_sp

Solubility Equilibrium

Dissolving ionic compound:

\ceAB(s)<=>A+(aq)+B(aq)\ce{AB(s) <=> A^+(aq) + B^-(aq)}

At equilibrium: Saturated solution

  • Solid in contact with dissolved ions
  • Rate dissolving = rate precipitating

Solubility Product Constant (K_sp)

For general ionic solid:

\ceMaXb(s)<=>aMb+(aq)+bXa(aq)\ce{M_aX_b(s) <=> aM^{b+}(aq) + bX^{a-}(aq)}

K_sp expression:

Ksp=[Mb+]a[Xa]bK_{sp} = [M^{b+}]^a[X^{a-}]^b

Key points:

  • Pure solid NOT included (like all heterogeneous K)
  • Only dissolved ions
  • Temperature dependent
  • Called solubility product

Examples:

  1. AgCl(s) ⇌ Ag⁺(aq) + Cl⁻(aq)

Ksp=[Ag+][Cl]K_{sp} = [Ag^+][Cl^-]

  1. PbI₂(s) ⇌ Pb²⁺(aq) + 2I⁻(aq)

Ksp=[Pb2+][I]2K_{sp} = [Pb^{2+}][I^-]^2

  1. Ca₃(PO₄)₂(s) ⇌ 3Ca²⁺(aq) + 2PO₄³⁻(aq)

Ksp=[Ca2+]3[PO43]2K_{sp} = [Ca^{2+}]^3[PO_4^{3-}]^2

Molar Solubility

Molar solubility (s): Maximum moles that dissolve per liter

Different from K_sp:

  • K_sp = equilibrium constant
  • s = concentration (mol/L)

Relationship depends on stoichiometry

Example: AgCl

AgCl(s) ⇌ Ag⁺ + Cl⁻

If solubility = s:

  • [Ag⁺] = s
  • [Cl⁻] = s

K_sp = s·s = s²

Example: PbI₂

PbI₂(s) ⇌ Pb²⁺ + 2I⁻

If solubility = s:

  • [Pb²⁺] = s
  • [I⁻] = 2s (stoichiometry!)

K_sp = s·(2s)² = 4s³

Calculating s from K_sp

General strategy:

  1. Write dissolution equation
  2. Express ion concentrations in terms of s
  3. Write K_sp expression
  4. Substitute and solve for s

Example: Calculate s for Ag₂CrO₄ given K_sp = 1.1 × 10⁻¹²

Ag₂CrO₄(s) ⇌ 2Ag⁺ + CrO₄²⁻

If s = solubility:

  • [Ag⁺] = 2s
  • [CrO₄²⁻] = s

K_sp = [Ag⁺]²[CrO₄²⁻] = (2s)²(s) = 4s³

1.1×1012=4s31.1 \times 10^{-12} = 4s^3

s3=2.75×1013s^3 = 2.75 \times 10^{-13}

s=6.5×105 Ms = 6.5 \times 10^{-5} \text{ M}

Ion Product (Q_sp)

Like Q for solubility:

Qsp=[Mb+]a[Xa]bQ_{sp} = [M^{b+}]^a[X^{a-}]^b

Use current concentrations (not equilibrium)

Predicting precipitation:

| Comparison | Result | |------------|--------| | Q_sp < K_sp | Unsaturated, no precipitate | | Q_sp = K_sp | Saturated, equilibrium | | Q_sp > K_sp | Supersaturated, precipitate forms |

Example: Will AgCl precipitate?

Given: K_sp(AgCl) = 1.8 × 10⁻¹⁰ Mix: [Ag⁺] = 1.0 × 10⁻⁴ M, [Cl⁻] = 1.0 × 10⁻⁴ M

Calculate Q_sp:

Qsp=[Ag+][Cl]=(1.0×104)(1.0×104)=1.0×108Q_{sp} = [Ag^+][Cl^-] = (1.0 \times 10^{-4})(1.0 \times 10^{-4}) = 1.0 \times 10^{-8}

Compare: Q_sp (1.0 × 10⁻⁸) > K_sp (1.8 × 10⁻¹⁰)

Result: Yes, AgCl precipitates!

Common Ion Effect

Adding ion already in equilibrium:

Shifts equilibrium by Le Chatelier

Example: AgCl in NaCl solution

AgCl(s) ⇌ Ag⁺ + Cl⁻

Add NaCl (source of Cl⁻):

  • Increases [Cl⁻]
  • Shifts left (less dissolving)
  • Decreases solubility

Common ion decreases solubility

Complex Ion Formation

Metal ions can form complex ions:

Increases solubility

Example: AgCl in NH₃

\ceAg++2NH3<=>Ag(NH3)2+\ce{Ag^+ + 2NH3 <=> Ag(NH3)2^+}

Removes Ag⁺ from solution:

  • Shifts dissolution right
  • More AgCl dissolves
  • Increases solubility

pH and Solubility

For salts of weak acids/bases:

pH affects solubility

Example: CaF₂ in acidic solution

CaF₂(s) ⇌ Ca²⁺ + 2F⁻

In acid: H⁺ + F⁻ → HF

  • Removes F⁻
  • Shifts right
  • More soluble in acid

Rule:

  • Salts of weak acids: more soluble in acid
  • Salts of weak bases: more soluble in base

Selective Precipitation

Separate ions by precipitation:

Strategy:

  1. Calculate K_sp for each compound
  2. Find [anion] needed to precipitate each
  3. Add reagent slowly
  4. First compound precipitates first

Example: Separate Ag⁺ and Pb²⁺ using Cl⁻

Given:

  • K_sp(AgCl) = 1.8 × 10⁻¹⁰
  • K_sp(PbCl₂) = 1.7 × 10⁻⁵

AgCl precipitates at much lower [Cl⁻]

Can separate by controlling [Cl⁻]

📚 Practice Problems

1Problem 1easy

Question:

The K_sp of AgCl is 1.8 × 10⁻¹⁰ at 25°C. Calculate the molar solubility of AgCl in pure water.

💡 Show Solution

Given:

  • Compound: AgCl
  • K_sp = 1.8 × 10⁻¹⁰

Write dissolution equation:

\ceAgCl(s)<=>Ag+(aq)+Cl(aq)\ce{AgCl(s) <=> Ag^+(aq) + Cl^-(aq)}


Set up ICE table:

Let s = molar solubility (mol/L that dissolve)

| | AgCl(s) | Ag⁺ | Cl⁻ | |-|---------|---------|---------| | I | solid | 0 | 0 | | C | -s | +s | +s | | E | solid | s | s |

At equilibrium:

  • [Ag⁺] = s
  • [Cl⁻] = s

Write K_sp expression:

Ksp=[Ag+][Cl]K_{sp} = [Ag^+][Cl^-]

Substitute:

1.8×1010=(s)(s)=s21.8 \times 10^{-10} = (s)(s) = s^2


Solve for s:

s2=1.8×1010s^2 = 1.8 \times 10^{-10}

s=1.8×1010s = \sqrt{1.8 \times 10^{-10}}

s=1.3×105 Ms = 1.3 \times 10^{-5} \text{ M}

Answer: Molar solubility = 1.3 × 10⁻⁵ M


Interpretation:

Very small solubility:

  • AgCl is "insoluble" (K_sp very small)
  • Only 1.3 × 10⁻⁵ mol/L dissolves
  • This is why AgCl precipitates easily

In grams per liter:

  • Molar mass AgCl = 143.5 g/mol
  • s = (1.3 × 10⁻⁵ mol/L)(143.5 g/mol) = 1.9 × 10⁻³ g/L

Very low solubility!

2Problem 2medium

Question:

The K_sp of PbI₂ is 7.9 × 10⁻⁹. Calculate: (a) the molar solubility in pure water, (b) the molar solubility in 0.10 M NaI solution.

💡 Show Solution

Given:

  • Compound: PbI₂
  • K_sp = 7.9 × 10⁻⁹

Dissolution: PbI₂(s) ⇌ Pb²⁺(aq) + 2I⁻(aq)


(a) Molar solubility in pure water

Let s = solubility:

| | PbI₂(s) | Pb²⁺ | 2I⁻ | |-|---------|---------|---------| | I | solid | 0 | 0 | | C | -s | +s | +2s | | E | solid | s | 2s |

Note: For every 1 Pb²⁺, get 2 I⁻

K_sp expression:

Ksp=[Pb2+][I]2K_{sp} = [Pb^{2+}][I^-]^2

7.9×109=(s)(2s)27.9 \times 10^{-9} = (s)(2s)^2

7.9×109=s4s27.9 \times 10^{-9} = s \cdot 4s^2

7.9×109=4s37.9 \times 10^{-9} = 4s^3

s3=7.9×1094=1.975×109s^3 = \frac{7.9 \times 10^{-9}}{4} = 1.975 \times 10^{-9}

s=1.975×1093s = \sqrt[3]{1.975 \times 10^{-9}}

s=1.25×103 Ms = 1.25 \times 10^{-3} \text{ M}

Answer (a): s = 1.3 × 10⁻³ M in pure water


(b) Molar solubility in 0.10 M NaI

NaI provides common ion (I⁻):

  • NaI → Na⁺ + I⁻
  • [I⁻]₀ = 0.10 M (from NaI)

ICE table:

| | PbI₂(s) | Pb²⁺ | 2I⁻ | |-|---------|---------|------------| | I | solid | 0 | 0.10 | | C | -s | +s | +2s | | E | solid | s | 0.10+2s |

K_sp expression:

7.9×109=(s)(0.10+2s)27.9 \times 10^{-9} = (s)(0.10 + 2s)^2

Small s approximation:

Since K_sp is very small, s << 0.10

Assume: 0.10 + 2s ≈ 0.10

7.9×109=(s)(0.10)27.9 \times 10^{-9} = (s)(0.10)^2

7.9×109=s(0.010)7.9 \times 10^{-9} = s(0.010)

s=7.9×1090.010s = \frac{7.9 \times 10^{-9}}{0.010}

s=7.9×107 Ms = 7.9 \times 10^{-7} \text{ M}

Check: 2s = 1.6 × 10⁻⁶ << 0.10 ✓ (approximation valid)

Answer (b): s = 7.9 × 10⁻⁷ M in 0.10 M NaI


Comparison:

Pure water: s = 1.3 × 10⁻³ M 0.10 M NaI: s = 7.9 × 10⁻⁷ M

Common ion effect:

  • Solubility decreased by factor of ~1600!
  • I⁻ from NaI shifts equilibrium left
  • Much less PbI₂ dissolves

3Problem 3hard

Question:

A solution contains 0.010 M Ag⁺ and 0.010 M Pb²⁺. If NaCl is slowly added, which compound precipitates first? K_sp(AgCl) = 1.8 × 10⁻¹⁰, K_sp(PbCl₂) = 1.7 × 10⁻⁵.

💡 Show Solution

Given:

  • [Ag⁺] = 0.010 M
  • [Pb²⁺] = 0.010 M
  • K_sp(AgCl) = 1.8 × 10⁻¹⁰
  • K_sp(PbCl₂) = 1.7 × 10⁻⁵

Adding NaCl → source of Cl⁻


Find [Cl⁻] needed to precipitate each:

For AgCl: AgCl(s) ⇌ Ag⁺ + Cl⁻

Precipitation when Q_sp = K_sp:

Ksp=[Ag+][Cl]K_{sp} = [Ag^+][Cl^-]

1.8×1010=(0.010)[Cl]1.8 \times 10^{-10} = (0.010)[Cl^-]

[Cl]=1.8×10100.010[Cl^-] = \frac{1.8 \times 10^{-10}}{0.010}

[Cl]=1.8×108 M[Cl^-] = 1.8 \times 10^{-8} \text{ M}

AgCl precipitates when [Cl⁻] ≥ 1.8 × 10⁻⁸ M


For PbCl₂: PbCl₂(s) ⇌ Pb²⁺ + 2Cl⁻

Precipitation when Q_sp = K_sp:

Ksp=[Pb2+][Cl]2K_{sp} = [Pb^{2+}][Cl^-]^2

1.7×105=(0.010)[Cl]21.7 \times 10^{-5} = (0.010)[Cl^-]^2

[Cl]2=1.7×1050.010[Cl^-]^2 = \frac{1.7 \times 10^{-5}}{0.010}

[Cl]2=1.7×103[Cl^-]^2 = 1.7 \times 10^{-3}

[Cl]=1.7×103[Cl^-] = \sqrt{1.7 \times 10^{-3}}

[Cl]=0.041 M[Cl^-] = 0.041 \text{ M}

PbCl₂ precipitates when [Cl⁻] ≥ 0.041 M


Compare:

AgCl precipitates at: [Cl⁻] = 1.8 × 10⁻⁸ M PbCl₂ precipitates at: [Cl⁻] = 0.041 M

AgCl requires much less Cl⁻!

Answer: AgCl precipitates first


Separation:

Can separate Ag⁺ and Pb²⁺:

Step 1: Add Cl⁻ slowly to [Cl⁻] = 1.8 × 10⁻⁸ M

  • AgCl precipitates
  • Pb²⁺ stays in solution

Step 2: Continue adding to [Cl⁻] = 0.041 M

  • Now PbCl₂ precipitates
  • Most Ag⁺ already removed

Window for separation:

1.8 × 10⁻⁸ M < [Cl⁻] < 0.041 M

In this range:

  • AgCl precipitated
  • PbCl₂ still dissolved
  • Successful separation!

General rule:

Compound with smaller K_sp precipitates first (when cations at equal concentration)