Introduction to Infinite Series

Understanding infinite series and partial sums

🎯 Introduction to Infinite Series

What is an Infinite Series?

An infinite series is the sum of all terms in an infinite sequence:

n=1an=a1+a2+a3+a4+\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + \cdots

Question: How can we add infinitely many numbers?

Answer: Use partial sums!


Partial Sums

The nth partial sum SnS_n is the sum of the first nn terms:

Sn=k=1nak=a1+a2++anS_n = \sum_{k=1}^{n} a_k = a_1 + a_2 + \cdots + a_n

Examples:

  • S1=a1S_1 = a_1
  • S2=a1+a2S_2 = a_1 + a_2
  • S3=a1+a2+a3S_3 = a_1 + a_2 + a_3

Convergence of a Series

The series n=1an\sum_{n=1}^{\infty} a_n converges to SS if:

limnSn=S\lim_{n \to \infty} S_n = S

where SnS_n is the sequence of partial sums.

If the limit exists (and is finite), the series converges.

If the limit doesn't exist or is infinite, the series diverges.

💡 Key Idea: A series converges if its partial sums approach a finite number!


Example 1: Finite Geometric Series

Sum: 1+2+4+8++2n11 + 2 + 4 + 8 + \cdots + 2^{n-1}

Formula: For geometric series with first term aa and ratio rr:

Sn=a1rn1r(r1)S_n = a\frac{1 - r^n}{1 - r} \quad (r \neq 1)

Here: a=1a = 1, r=2r = 2

Sn=12n12=12n1=2n1S_n = \frac{1 - 2^n}{1 - 2} = \frac{1 - 2^n}{-1} = 2^n - 1

Check: S1=1S_1 = 1, S2=3S_2 = 3, S3=7S_3 = 7, S4=15S_4 = 15


Infinite Geometric Series

n=0arn=a+ar+ar2+ar3+\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + ar^3 + \cdots

Partial sum: Sn=a1rn1rS_n = a\frac{1 - r^n}{1 - r} (if r1r \neq 1)


Take limit:

limnSn=limna1rn1r\lim_{n \to \infty} S_n = \lim_{n \to \infty} a\frac{1 - r^n}{1 - r}


Case 1: If r<1|r| < 1, then rn0r^n \to 0 as nn \to \infty

S=a1rS = \frac{a}{1 - r}

Series converges!


Case 2: If r1|r| \geq 1, then rnr^n doesn't approach 0

Series diverges!


Geometric Series Formula

n=0arn=a1rif r<1\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \quad \text{if } |r| < 1

Diverges if r1|r| \geq 1

🎯 MEMORIZE THIS! Most important series formula!


Example 2: Evaluate n=012n\sum_{n=0}^{\infty} \frac{1}{2^n}

This is geometric with a=1a = 1 and r=12r = \frac{1}{2}.

Since r=12<1|r| = \frac{1}{2} < 1, it converges:

S=1112=112=2S = \frac{1}{1 - \frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2

Check: 1+12+14+18+=21 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 2


Example 3: Evaluate n=135n\sum_{n=1}^{\infty} \frac{3}{5^n}

Rewrite with nn starting at 0:

n=135n=3n=1(15)n\sum_{n=1}^{\infty} \frac{3}{5^n} = 3\sum_{n=1}^{\infty} \left(\frac{1}{5}\right)^n

=3[n=0(15)n1]= 3\left[\sum_{n=0}^{\infty} \left(\frac{1}{5}\right)^n - 1\right]

=3[11151]= 3\left[\frac{1}{1-\frac{1}{5}} - 1\right]

=3[541]=314=34= 3\left[\frac{5}{4} - 1\right] = 3 \cdot \frac{1}{4} = \frac{3}{4}

Or directly: First term is a=35a = \frac{3}{5}, ratio r=15r = \frac{1}{5}

S=35115=3545=34S = \frac{\frac{3}{5}}{1 - \frac{1}{5}} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}


Telescoping Series

A series where most terms cancel out!

General form: n=1(bnbn+1)\sum_{n=1}^{\infty} (b_n - b_{n+1})

Partial sum: Sn=(b1b2)+(b2b3)+(b3b4)++(bnbn+1)S_n = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + \cdots + (b_n - b_{n+1})

Most terms cancel: Sn=b1bn+1S_n = b_1 - b_{n+1}


Limit: S=limnSn=b1limnbn+1S = \lim_{n \to \infty} S_n = b_1 - \lim_{n \to \infty} b_{n+1}

If limnbn+1\lim_{n \to \infty} b_{n+1} exists, the series converges!


Example 4: Telescoping Series

Evaluate n=11n(n+1)\sum_{n=1}^{\infty} \frac{1}{n(n+1)}.

Step 1: Use partial fractions

1n(n+1)=An+Bn+1\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1}

1=A(n+1)+Bn1 = A(n+1) + Bn

Set n=0n = 0: 1=A1 = A

Set n=1n = -1: 1=B1 = -B, so B=1B = -1

1n(n+1)=1n1n+1\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}


Step 2: Write out partial sum

Sn=k=1n(1k1k+1)S_n = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)

=(1112)+(1213)+(1314)++(1n1n+1)= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots + \left(\frac{1}{n} - \frac{1}{n+1}\right)


Step 3: Most terms cancel (telescope!)

Sn=11n+1S_n = 1 - \frac{1}{n+1}


Step 4: Take limit

S=limn(11n+1)=10=1S = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1

Answer: n=11n(n+1)=1\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1


The Harmonic Series

n=11n=1+12+13+14+\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots

Question: Does it converge?

Intuition: Terms approach 0, so maybe it converges?

Answer: IT DIVERGES! 🤯


Proof (grouping argument):

S=1+12+(13+14)+(15+16+17+18)+S = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \cdots

>1+12+(14+14)+(18+18+18+18)+> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \cdots

=1+12+12+12+== 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots = \infty

The harmonic series diverges!

⚠️ Important: Just because an0a_n \to 0 doesn't mean an\sum a_n converges!


The nth Term Test for Divergence

If limnan0\lim_{n \to \infty} a_n \neq 0, then n=1an\sum_{n=1}^{\infty} a_n diverges.

Contrapositive: If an\sum a_n converges, then liman=0\lim a_n = 0.

⚠️ WARNING: The converse is FALSE! liman=0\lim a_n = 0 does NOT imply convergence (harmonic series is a counterexample).


Example 5: Use nth Term Test

Does n=1n2n+1\sum_{n=1}^{\infty} \frac{n}{2n+1} converge?

Check limit:

limnn2n+1=limn12+1n=120\lim_{n \to \infty} \frac{n}{2n+1} = \lim_{n \to \infty} \frac{1}{2 + \frac{1}{n}} = \frac{1}{2} \neq 0

By nth Term Test, the series diverges.


Properties of Convergent Series

If an=A\sum a_n = A and bn=B\sum b_n = B (both converge), then:

  1. Sum: (an+bn)=A+B\sum (a_n + b_n) = A + B

  2. Constant Multiple: can=cA\sum c \cdot a_n = c \cdot A

  3. Difference: (anbn)=AB\sum (a_n - b_n) = A - B

Note: Can't multiply series directly! (an)(bn)anbn(\sum a_n)(\sum b_n) \neq \sum a_n b_n


Example 6: Use Properties

If n=1an=5\sum_{n=1}^{\infty} a_n = 5 and n=1bn=3\sum_{n=1}^{\infty} b_n = 3, find:

n=1(2an3bn)\sum_{n=1}^{\infty} (2a_n - 3b_n)

Solution:

(2an3bn)=2an3bn=2(5)3(3)=109=1\sum (2a_n - 3b_n) = 2\sum a_n - 3\sum b_n = 2(5) - 3(3) = 10 - 9 = 1


Changing Index

You can shift the starting index of a series (but it changes the value for geometric series!).

Example: n=0rn=11r\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} (if r<1|r| < 1)

But: n=1rn=r1r\sum_{n=1}^{\infty} r^n = \frac{r}{1-r} (missing the first term!)

Always check where the sum starts!


⚠️ Common Mistakes

Mistake 1: Thinking liman=0\lim a_n = 0 Implies Convergence

WRONG: "Since lim1n=0\lim \frac{1}{n} = 0, the series 1n\sum \frac{1}{n} converges"

RIGHT: Harmonic series diverges even though terms approach 0!

liman=0\lim a_n = 0 is necessary but not sufficient for convergence.


Mistake 2: Wrong Geometric Series Formula

For n=1arn\sum_{n=1}^{\infty} ar^n (starting at n=1n=1):

First term is arar (not aa), so sum is ar1r\frac{ar}{1-r}

Or rewrite: n=1arn=arn=0rn=ar11r=ar1r\sum_{n=1}^{\infty} ar^n = ar\sum_{n=0}^{\infty} r^n = ar \cdot \frac{1}{1-r} = \frac{ar}{1-r}


Mistake 3: Using nth Term Test to Prove Convergence

nth Term Test can only prove DIVERGENCE!

If liman=0\lim a_n = 0, you learn nothing from this test.


Mistake 4: Arithmetic with Divergent Series

Can't add/subtract/multiply divergent series using the properties!

Properties only work when BOTH series converge.


📝 Practice Strategy

  1. Geometric series: Identify aa and rr, check r<1|r| < 1, use formula a1r\frac{a}{1-r}
  2. Telescoping: Use partial fractions, write out terms to see cancellation
  3. Always check nth term test first: If liman0\lim a_n \neq 0, you're done (diverges)!
  4. Harmonic series diverges: Memorize this fact
  5. Watch starting index: n=0n=0 vs n=1n=1 changes the sum
  6. Partial sums: When in doubt, find SnS_n formula and take limit
  7. Series vs Sequence: Series is sum, sequence is list!

📚 Practice Problems

1Problem 1easy

Question:

Determine if the series n=12n+35n1\sum_{n=1}^{\infty} \frac{2n+3}{5n-1} converges or diverges.

💡 Show Solution

Step 1: Use nth Term Test

Check if limnan=0\lim_{n \to \infty} a_n = 0.

limn2n+35n1\lim_{n \to \infty} \frac{2n+3}{5n-1}


Step 2: Divide by nn

=limn2+3n51n=250= \lim_{n \to \infty} \frac{2 + \frac{3}{n}}{5 - \frac{1}{n}} = \frac{2}{5} \neq 0


Step 3: Conclusion

Since limnan=250\lim_{n \to \infty} a_n = \frac{2}{5} \neq 0, by the nth Term Test:

The series diverges.


Answer: Diverges (nth Term Test)

2Problem 2medium

Question:

Determine whether the geometric series converges or diverges. If it converges, find the sum.

n=134n\sum_{n=1}^{\infty} \frac{3}{4^n}

💡 Show Solution

Solution:

This is a geometric series with first term a=34a = \frac{3}{4} and ratio r=14r = \frac{1}{4}.

Rewrite: n=134n=n=13(14)n\sum_{n=1}^{\infty} \frac{3}{4^n} = \sum_{n=1}^{\infty} 3 \left(\frac{1}{4}\right)^n

A geometric series arn\sum ar^n converges if r<1|r| < 1 and diverges if r1|r| \geq 1.

Since r=14<1|r| = \frac{1}{4} < 1, the series converges.

Sum formula for geometric series: S=a1rS = \frac{a}{1 - r}

S=3/411/4=3/43/4=1S = \frac{3/4}{1 - 1/4} = \frac{3/4}{3/4} = 1

The series converges to 1.

3Problem 3medium

Question:

Find the sum of the series n=032n5n+1\sum_{n=0}^{\infty} \frac{3 \cdot 2^n}{5^{n+1}}.

💡 Show Solution

Step 1: Rewrite the series

n=032n5n+1=n=032n55n\sum_{n=0}^{\infty} \frac{3 \cdot 2^n}{5^{n+1}} = \sum_{n=0}^{\infty} \frac{3 \cdot 2^n}{5 \cdot 5^n}

=35n=02n5n= \frac{3}{5} \sum_{n=0}^{\infty} \frac{2^n}{5^n}

=35n=0(25)n= \frac{3}{5} \sum_{n=0}^{\infty} \left(\frac{2}{5}\right)^n


Step 2: Identify geometric series

This is geometric with:

  • First term: a=1a = 1 (when summing rnr^n from n=0n=0)
  • Common ratio: r=25r = \frac{2}{5}

Since r=25<1|r| = \frac{2}{5} < 1, it converges!


Step 3: Apply formula

n=0(25)n=1125=135=53\sum_{n=0}^{\infty} \left(\frac{2}{5}\right)^n = \frac{1}{1 - \frac{2}{5}} = \frac{1}{\frac{3}{5}} = \frac{5}{3}


Step 4: Multiply by constant

3553=1\frac{3}{5} \cdot \frac{5}{3} = 1


Answer: The series converges to 11.

4Problem 4hard

Question:

Find the sum of the series:

n=02n+3n6n\sum_{n=0}^{\infty} \frac{2^n + 3^n}{6^n}

💡 Show Solution

Solution:

Split into two separate series:

n=02n+3n6n=n=02n6n+n=03n6n\sum_{n=0}^{\infty} \frac{2^n + 3^n}{6^n} = \sum_{n=0}^{\infty} \frac{2^n}{6^n} + \sum_{n=0}^{\infty} \frac{3^n}{6^n}

=n=0(26)n+n=0(36)n= \sum_{n=0}^{\infty} \left(\frac{2}{6}\right)^n + \sum_{n=0}^{\infty} \left(\frac{3}{6}\right)^n

=n=0(13)n+n=0(12)n= \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n + \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n

Both are geometric series starting at n=0n=0 with r<1|r| < 1.

For geometric series starting at n=0n=0: S=11rS = \frac{1}{1-r}

First series: S1=111/3=12/3=32S_1 = \frac{1}{1 - 1/3} = \frac{1}{2/3} = \frac{3}{2}

Second series: S2=111/2=11/2=2S_2 = \frac{1}{1 - 1/2} = \frac{1}{1/2} = 2

Total: S=32+2=72S = \frac{3}{2} + 2 = \frac{7}{2}

5Problem 5hard

Question:

Evaluate n=1(1n+11n+2)\sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+2}\right) using telescoping.

💡 Show Solution

Step 1: Write out partial sum

Sn=k=1n(1k+11k+2)S_n = \sum_{k=1}^{n} \left(\frac{1}{k+1} - \frac{1}{k+2}\right)


Step 2: Expand terms

Sn=(1213)+(1314)+(1415)++(1n+11n+2)S_n = \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \cdots + \left(\frac{1}{n+1} - \frac{1}{n+2}\right)


Step 3: Look for cancellation

Rearrange to see pattern: Sn=1213+1314+1415++1n+11n+2S_n = \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \cdots + \frac{1}{n+1} - \frac{1}{n+2}

Most terms cancel!

Sn=121n+2S_n = \frac{1}{2} - \frac{1}{n+2}


Step 4: Take limit

S=limnSn=limn(121n+2)S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{1}{2} - \frac{1}{n+2}\right)

=120=12= \frac{1}{2} - 0 = \frac{1}{2}


Answer: The series converges to 12\frac{1}{2}.