Exponents and Radicals

Master exponent rules and radical simplification for SAT

Exponents and Radicals (SAT Math)

Exponent Rules

Rule 1: Product Rule

When multiplying same base, ADD exponents:

xaxb=xa+bx^a \cdot x^b = x^{a+b}

Examples:

  • x3x5=x3+5=x8x^3 \cdot x^5 = x^{3+5} = x^8
  • 2423=24+3=27=1282^4 \cdot 2^3 = 2^{4+3} = 2^7 = 128

Rule 2: Quotient Rule

When dividing same base, SUBTRACT exponents:

xaxb=xab\frac{x^a}{x^b} = x^{a-b}

Examples:

  • x7x4=x74=x3\frac{x^7}{x^4} = x^{7-4} = x^3
  • 5652=562=54=625\frac{5^6}{5^2} = 5^{6-2} = 5^4 = 625

Rule 3: Power Rule

When raising power to power, MULTIPLY exponents:

(xa)b=xab(x^a)^b = x^{ab}

Examples:

  • (x3)4=x34=x12(x^3)^4 = x^{3 \cdot 4} = x^{12}
  • (22)3=223=26=64(2^2)^3 = 2^{2 \cdot 3} = 2^6 = 64

Rule 4: Power of a Product

Distribute the exponent:

(xy)a=xaya(xy)^a = x^a y^a

Examples:

  • (3x)2=32x2=9x2(3x)^2 = 3^2 \cdot x^2 = 9x^2
  • (2ab)3=23a3b3=8a3b3(2ab)^3 = 2^3 a^3 b^3 = 8a^3b^3

Rule 5: Power of a Quotient

Distribute the exponent:

(xy)a=xaya\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}

Examples:

  • (x3)2=x232=x29\left(\frac{x}{3}\right)^2 = \frac{x^2}{3^2} = \frac{x^2}{9}
  • (2y)4=24y4=16y4\left(\frac{2}{y}\right)^4 = \frac{2^4}{y^4} = \frac{16}{y^4}

Special Exponents

Zero Exponent

Any number (except 0) to the zero power equals 1:

x0=1x^0 = 1 (where x0x \neq 0)

Examples:

  • 50=15^0 = 1
  • (x2y3)0=1(x^2y^3)^0 = 1
  • 2(3x)0=2(1)=2-2(3x)^0 = -2(1) = -2 (only (3x)0=1(3x)^0 = 1)

Negative Exponents

Negative exponent means reciprocal:

xa=1xax^{-a} = \frac{1}{x^a}

Examples:

  • x3=1x3x^{-3} = \frac{1}{x^3}
  • 24=124=1162^{-4} = \frac{1}{2^4} = \frac{1}{16}
  • 1x2=x2\frac{1}{x^{-2}} = x^2 (flipping reciprocal)

In fractions: x2y3=y3x2\frac{x^{-2}}{y^{-3}} = \frac{y^3}{x^2}

Negative exponents "flip" to the other part of the fraction

Fractional Exponents

Fractional exponent = root:

x1n=xnx^{\frac{1}{n}} = \sqrt[n]{x}

Examples:

  • x12=xx^{\frac{1}{2}} = \sqrt{x} (square root)
  • x13=x3x^{\frac{1}{3}} = \sqrt[3]{x} (cube root)
  • 813=83=28^{\frac{1}{3}} = \sqrt[3]{8} = 2

General form: xmn=xmn=(xn)mx^{\frac{m}{n}} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m

Examples:

  • 823=(83)2=22=48^{\frac{2}{3}} = (\sqrt[3]{8})^2 = 2^2 = 4
  • 1634=(164)3=23=816^{\frac{3}{4}} = (\sqrt[4]{16})^3 = 2^3 = 8

Radical Rules

Simplifying Radicals

Product Rule: ab=ab\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}

Example: 72=362=362=62\sqrt{72} = \sqrt{36 \cdot 2} = \sqrt{36} \cdot \sqrt{2} = 6\sqrt{2}

Quotient Rule: ab=ab\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}

Example: 1625=1625=45\sqrt{\frac{16}{25}} = \frac{\sqrt{16}}{\sqrt{25}} = \frac{4}{5}

Simplification Strategy

Find perfect square factors:

Example: Simplify 48\sqrt{48}

Step 1: Factor into perfect square
48=16348 = 16 \cdot 3

Step 2: Split the radical
48=163=163\sqrt{48} = \sqrt{16 \cdot 3} = \sqrt{16} \cdot \sqrt{3}

Step 3: Simplify
=43= 4\sqrt{3}

Common perfect squares: 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144

Adding and Subtracting Radicals

Can only combine LIKE radicals (same radicand):

32+52=823\sqrt{2} + 5\sqrt{2} = 8\sqrt{2}
7323=537\sqrt{3} - 2\sqrt{3} = 5\sqrt{3}
2+3\sqrt{2} + \sqrt{3} cannot be simplified (different radicands)

Sometimes need to simplify first:

Example: 50+8\sqrt{50} + \sqrt{8}

50=252=52\sqrt{50} = \sqrt{25 \cdot 2} = 5\sqrt{2} 8=42=22\sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2}

50+8=52+22=72\sqrt{50} + \sqrt{8} = 5\sqrt{2} + 2\sqrt{2} = 7\sqrt{2}

Multiplying Radicals

Multiply coefficients and radicands separately:

abcd=(ac)bda\sqrt{b} \cdot c\sqrt{d} = (a \cdot c)\sqrt{b \cdot d}

Examples:

  • 2352=1062\sqrt{3} \cdot 5\sqrt{2} = 10\sqrt{6}
  • 3626=636=6(6)=363\sqrt{6} \cdot 2\sqrt{6} = 6\sqrt{36} = 6(6) = 36

Rationalizing the Denominator

Don't leave radicals in denominator:

1a1aaa=aa\frac{1}{\sqrt{a}} \rightarrow \frac{1}{\sqrt{a}} \cdot \frac{\sqrt{a}}{\sqrt{a}} = \frac{\sqrt{a}}{a}

Examples:

52=5222=522\frac{5}{\sqrt{2}} = \frac{5}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{5\sqrt{2}}{2}

63=6333=633=23\frac{6}{\sqrt{3}} = \frac{6}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{6\sqrt{3}}{3} = 2\sqrt{3}

With binomial denominators, use conjugate:

12+32323=2343=23\frac{1}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}} = \frac{2 - \sqrt{3}}{4 - 3} = 2 - \sqrt{3}

Converting Between Forms

Radical to Exponent

x=x12\sqrt{x} = x^{\frac{1}{2}} x23=x23\sqrt[3]{x^2} = x^{\frac{2}{3}} 1x=x12\frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}

Exponent to Radical

x34=x34x^{\frac{3}{4}} = \sqrt[4]{x^3} x13=1x3x^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{x}}

Why convert? Sometimes easier to use exponent rules, sometimes radical form is clearer

SAT Question Types

Type 1: Simplify Expressions

Strategy:

  • Apply exponent/radical rules step by step
  • Combine like terms
  • Simplify radicals completely

Type 2: Solve Equations with Exponents

Example: 2x+1=322^{x+1} = 32

Solution:

  • Rewrite 32 as power of 2: 32=2532 = 2^5
  • 2x+1=252^{x+1} = 2^5
  • Same base → exponents equal: x+1=5x + 1 = 5
  • x=4x = 4

Type 3: Solve Equations with Radicals

Example: x+3=5\sqrt{x + 3} = 5

Solution:

  • Square both sides: x+3=25x + 3 = 25
  • Solve: x=22x = 22
  • Always check! 22+3=25=5\sqrt{22 + 3} = \sqrt{25} = 5

Type 4: Simplify Radicals

Example: Simplify 200\sqrt{200}

Solution:

  • 200=1002200 = 100 \cdot 2
  • 200=1002=102\sqrt{200} = \sqrt{100} \cdot \sqrt{2} = 10\sqrt{2}

Type 5: Compare Values

Which is larger: 21002^{100} or 4504^{50}?

Solution:

  • Rewrite with same base: 450=(22)50=21004^{50} = (2^2)^{50} = 2^{100}
  • They're equal!

Common SAT Mistakes

Confusing addition and multiplication of exponents
x2x3=x5x^2 \cdot x^3 = x^5 (NOT x6x^6)
(x2)3=x6(x^2)^3 = x^6 (NOT x5x^5)

Distributing exponents incorrectly
(x+y)2x2+y2(x + y)^2 \neq x^2 + y^2
Must use FOIL: (x+y)2=x2+2xy+y2(x + y)^2 = x^2 + 2xy + y^2

Forgetting to flip negative exponents
x2=1x2x^{-2} = \frac{1}{x^2} (NOT x2-x^2)

Not simplifying radicals completely
48=43\sqrt{48} = 4\sqrt{3} (NOT 2122\sqrt{12})

Squaring both sides creates extraneous solutions
Always check answers in original equation!

Mishandling fractional exponents
x23=(x3)2x^{\frac{2}{3}} = (\sqrt[3]{x})^2 (root THEN power)

Quick Reference Table

| Expression | Equivalent | Example | |------------|-----------|---------| | x0x^0 | 11 | 50=15^0 = 1 | | xax^{-a} | 1xa\frac{1}{x^a} | x3=1x3x^{-3} = \frac{1}{x^3} | | x12x^{\frac{1}{2}} | x\sqrt{x} | 1612=416^{\frac{1}{2}} = 4 | | x1nx^{\frac{1}{n}} | xn\sqrt[n]{x} | 813=28^{\frac{1}{3}} = 2 | | xmnx^{\frac{m}{n}} | (xn)m(\sqrt[n]{x})^m | 823=48^{\frac{2}{3}} = 4 | | xaxbx^a \cdot x^b | xa+bx^{a+b} | x2x3=x5x^2 \cdot x^3 = x^5 | | xaxb\frac{x^a}{x^b} | xabx^{a-b} | x5x2=x3\frac{x^5}{x^2} = x^3 | | (xa)b(x^a)^b | xabx^{ab} | (x2)3=x6(x^2)^3 = x^6 |

Practice Tips

Memorize the rules — they appear on EVERY SAT
Rewrite with same base when comparing or solving
Convert between forms (radical ↔ exponent) for easier manipulation
Factor out perfect squares when simplifying radicals
Check solutions especially after squaring both sides
Use calculator strategically for numerical values, but show algebraic work

Remember: Exponent and radical rules are fundamental — master these and many SAT problems become much easier!

📚 Practice Problems

1Problem 1easy

Question:

Simplify: x5x3x^5 \cdot x^3

💡 Show Solution

Solution:

Use product rule (add exponents): x5x3=x5+3=x8x^5 \cdot x^3 = x^{5+3} = x^8

Answer: x8x^8

2Problem 2medium

Question:

Simplify: 72\sqrt{72}

💡 Show Solution

Solution:

Factor to find perfect squares: 72=362\sqrt{72} = \sqrt{36 \cdot 2}

=362= \sqrt{36} \cdot \sqrt{2}

=62= 6\sqrt{2}

Answer: 626\sqrt{2}

3Problem 3hard

Question:

Simplify: (x3)4x7\frac{(x^3)^4}{x^7}

💡 Show Solution

Solution:

Step 1: Power rule in numerator (x3)4=x12(x^3)^4 = x^{12}

Step 2: Quotient rule x12x7=x127=x5\frac{x^{12}}{x^7} = x^{12-7} = x^5

Answer: x5x^5

SAT Tip: Apply power rule before quotient rule!