Types of Chemical Reactions

Master the classification of chemical reactions including synthesis, decomposition, single and double replacement, combustion, and precipitation reactions.

Types of Chemical Reactions

Overview

Chemical reaction: Process where reactants are transformed into products

  • Bonds broken in reactants
  • New bonds formed in products
  • Atoms conserved (Law of Conservation of Mass)
  • Energy changes accompany reactions

General representation:

\ceReactants>Products\ce{Reactants -> Products}

Balanced equation: Same number of each type of atom on both sides

Five Main Types of Reactions

1. Synthesis (Combination) Reactions

Definition: Two or more substances combine to form a single product

General form:

\ceA+B>AB\ce{A + B -> AB}

Examples:

Metal + Nonmetal → Ionic compound:

\ce2Na(s)+Cl2(g)>2NaCl(s)\ce{2Na(s) + Cl2(g) -> 2NaCl(s)}

\ce2Mg(s)+O2(g)>2MgO(s)\ce{2Mg(s) + O2(g) -> 2MgO(s)}

Nonmetal + Nonmetal → Molecular compound:

\ceC(s)+O2(g)>CO2(g)\ce{C(s) + O2(g) -> CO2(g)}

\ceN2(g)+3H2(g)>2NH3(g)\ce{N2(g) + 3H2(g) -> 2NH3(g)} (Haber process)

Metal oxide + Water → Metal hydroxide:

\ceCaO(s)+H2O(l)>Ca(OH)2(aq)\ce{CaO(s) + H2O(l) -> Ca(OH)2(aq)}

\ceNa2O(s)+H2O(l)>2NaOH(aq)\ce{Na2O(s) + H2O(l) -> 2NaOH(aq)}

Nonmetal oxide + Water → Acid:

\ceCO2(g)+H2O(l)>H2CO3(aq)\ce{CO2(g) + H2O(l) -> H2CO3(aq)} (carbonic acid)

\ceSO3(g)+H2O(l)>H2SO4(aq)\ce{SO3(g) + H2O(l) -> H2SO4(aq)} (sulfuric acid)

Characteristics:

  • Multiple reactants → One product
  • Often exothermic (releases energy)
  • Opposite of decomposition

2. Decomposition Reactions

Definition: Single compound breaks down into two or more simpler substances

General form:

\ceAB>A+B\ce{AB -> A + B}

Examples:

Heat decomposition:

\ce2HgO(s)>[Δ]2Hg(l)+O2(g)\ce{2HgO(s) ->[\Delta] 2Hg(l) + O2(g)}

\ceCaCO3(s)>[Δ]CaO(s)+CO2(g)\ce{CaCO3(s) ->[\Delta] CaO(s) + CO2(g)}

Electrolysis (electrical energy):

\ce2H2O(l)>[electricity]2H2(g)+O2(g)\ce{2H2O(l) ->[\text{electricity}] 2H2(g) + O2(g)}

\ce2NaCl(l)>[electricity]2Na(l)+Cl2(g)\ce{2NaCl(l) ->[\text{electricity}] 2Na(l) + Cl2(g)}

Catalytic decomposition:

\ce2H2O2(aq)>[MnO2]2H2O(l)+O2(g)\ce{2H2O2(aq) ->[MnO_2] 2H2O(l) + O2(g)}

Binary compound decomposition:

\ce2KClO3(s)>[Δ]2KCl(s)+3O2(g)\ce{2KClO3(s) ->[\Delta] 2KCl(s) + 3O2(g)}

Characteristics:

  • One reactant → Multiple products
  • Often requires energy input (endothermic)
  • Need heat, electricity, or light
  • Opposite of synthesis

3. Single Replacement (Displacement) Reactions

Definition: One element replaces another in a compound

General forms:

Metal replaces metal:

\ceA+BC>AC+B\ce{A + BC -> AC + B}

Nonmetal replaces nonmetal:

\ceA+BC>BA+C\ce{A + BC -> BA + C}

Examples:

More reactive metal displaces less reactive:

\ceZn(s)+CuSO4(aq)>ZnSO4(aq)+Cu(s)\ce{Zn(s) + CuSO4(aq) -> ZnSO4(aq) + Cu(s)}

\ceMg(s)+2HCl(aq)>MgCl2(aq)+H2(g)\ce{Mg(s) + 2HCl(aq) -> MgCl2(aq) + H2(g)}

\ce2Al(s)+3CuCl2(aq)>2AlCl3(aq)+3Cu(s)\ce{2Al(s) + 3CuCl2(aq) -> 2AlCl3(aq) + 3Cu(s)}

More reactive halogen displaces less reactive:

\ceCl2(g)+2NaBr(aq)>2NaCl(aq)+Br2(l)\ce{Cl2(g) + 2NaBr(aq) -> 2NaCl(aq) + Br2(l)}

\ceBr2(l)+2KI(aq)>2KBr(aq)+I2(s)\ce{Br2(l) + 2KI(aq) -> 2KBr(aq) + I2(s)}

Predicting if reaction occurs:

Use Activity Series (reactivity order)

Metal Activity Series (most → least reactive):

  • Li > K > Ba > Ca > Na > Mg > Al > Zn > Fe > Ni > Sn > Pb > H > Cu > Ag > Au

Rule: Metal higher in series displaces metal lower in series

Halogen Activity Series:

  • F₂ > Cl₂ > Br₂ > I₂

Rule: Halogen higher in series displaces halogen lower in series

Will this reaction occur?

\ceCu(s)+2AgNO3(aq)>?\ce{Cu(s) + 2AgNO3(aq) -> ?}

Check: Cu is above Ag in activity series → YES, reaction occurs

\ceCu(s)+2AgNO3(aq)>Cu(NO3)2(aq)+2Ag(s)\ce{Cu(s) + 2AgNO3(aq) -> Cu(NO3)2(aq) + 2Ag(s)}

\ceAg(s)+CuSO4(aq)>?\ce{Ag(s) + CuSO4(aq) -> ?}

Check: Ag is below Cu in activity series → NO, no reaction

\ceAg(s)+CuSO4(aq)>No Reaction\ce{Ag(s) + CuSO4(aq) -> \text{No Reaction}}

4. Double Replacement (Metathesis) Reactions

Definition: Two compounds exchange partners

General form:

\ceAB+CD>AD+CB\ce{AB + CD -> AD + CB}

Cations and anions "switch partners"

Examples:

Precipitation reactions:

\ceAgNO3(aq)+NaCl(aq)>AgCl(s)+NaNO3(aq)\ce{AgNO3(aq) + NaCl(aq) -> AgCl(s) + NaNO3(aq)}

\cePb(NO3)2(aq)+2KI(aq)>PbI2(s)+2KNO3(aq)\ce{Pb(NO3)2(aq) + 2KI(aq) -> PbI2(s) + 2KNO3(aq)}

Acid-base neutralization:

\ceHCl(aq)+NaOH(aq)>NaCl(aq)+H2O(l)\ce{HCl(aq) + NaOH(aq) -> NaCl(aq) + H2O(l)}

\ceH2SO4(aq)+2KOH(aq)>K2SO4(aq)+2H2O(l)\ce{H2SO4(aq) + 2KOH(aq) -> K2SO4(aq) + 2H2O(l)}

Gas formation:

\ce2HCl(aq)+Na2CO3(aq)>2NaCl(aq)+H2O(l)+CO2(g)\ce{2HCl(aq) + Na2CO3(aq) -> 2NaCl(aq) + H2O(l) + CO2(g)}

\ce2HCl(aq)+Na2S(aq)>2NaCl(aq)+H2S(g)\ce{2HCl(aq) + Na2S(aq) -> 2NaCl(aq) + H2S(g)}

Predicting if reaction occurs:

Double replacement reactions occur if one of these forms:

  1. Precipitate (insoluble solid)
  2. Water (in neutralization)
  3. Gas (escapes from solution)

Use solubility rules to predict precipitates!

5. Combustion Reactions

Definition: Substance reacts rapidly with oxygen, releasing energy as heat and light

General form (hydrocarbon combustion):

\ceCxHy+O2>CO2+H2O+energy\ce{C_xH_y + O2 -> CO2 + H2O + \text{energy}}

Complete combustion examples:

\ceCH4(g)+2O2(g)>CO2(g)+2H2O(g)\ce{CH4(g) + 2O2(g) -> CO2(g) + 2H2O(g)} (methane)

\ceC3H8(g)+5O2(g)>3CO2(g)+4H2O(g)\ce{C3H8(g) + 5O2(g) -> 3CO2(g) + 4H2O(g)} (propane)

\ce2C8H18(l)+25O2(g)>16CO2(g)+18H2O(g)\ce{2C8H18(l) + 25O2(g) -> 16CO2(g) + 18H2O(g)} (octane)

Complete combustion products:

  • CO₂ (carbon dioxide)
  • H₂O (water)
  • Energy (heat and light)

Incomplete combustion (insufficient O₂):

\ce2CH4(g)+3O2(g)>2CO(g)+4H2O(g)\ce{2CH4(g) + 3O2(g) -> 2CO(g) + 4H2O(g)} (produces CO)

\ceCH4(g)+O2(g)>C(s)+2H2O(g)\ce{CH4(g) + O2(g) -> C(s) + 2H2O(g)} (produces soot)

Other combustion reactions:

\ceS(s)+O2(g)>SO2(g)\ce{S(s) + O2(g) -> SO2(g)}

\ce4Fe(s)+3O2(g)>2Fe2O3(s)\ce{4Fe(s) + 3O2(g) -> 2Fe2O3(s)} (rusting)

Characteristics:

  • Always involves O₂ as reactant
  • Exothermic (releases energy)
  • Often produces flame
  • Important for energy production

Solubility Rules

Essential for predicting precipitation in double replacement reactions

Soluble Compounds (form aqueous solutions)

1. Group 1 (alkali metals) compounds:

  • All Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺ salts are soluble
  • Example: NaCl, K₂SO₄, LiNO₃

2. Ammonium (NH₄⁺) compounds:

  • All NH₄⁺ salts are soluble
  • Example: (NH₄)₂SO₄, NH₄Cl

3. Nitrates (NO₃⁻), acetates (C₂H₃O₂⁻), perchlorates (ClO₄⁻):

  • All soluble
  • Example: AgNO₃, Ca(NO₃)₂, Pb(C₂H₃O₂)₂

4. Most chlorides (Cl⁻), bromides (Br⁻), iodides (I⁻):

  • Soluble EXCEPT with Ag⁺, Pb²⁺, Hg₂²⁺
  • AgCl, PbBr₂, Hg₂I₂ are insoluble

5. Most sulfates (SO₄²⁻):

  • Soluble EXCEPT with Sr²⁺, Ba²⁺, Pb²⁺
  • SrSO₄, BaSO₄, PbSO₄ are insoluble

Insoluble Compounds (form precipitates)

1. Carbonates (CO₃²⁻), phosphates (PO₄³⁻), chromates (CrO₄²⁻):

  • Insoluble EXCEPT with Group 1 and NH₄⁺
  • CaCO₃, Ag₃PO₄, PbCrO₄ are insoluble
  • But: Na₂CO₃, K₃PO₄, (NH₄)₂CrO₄ are soluble

2. Hydroxides (OH⁻):

  • Insoluble EXCEPT with Group 1, Ba²⁺, Sr²⁺, Ca²⁺ (slightly)
  • Fe(OH)₃, Al(OH)₃, Cu(OH)₂ are insoluble
  • But: NaOH, KOH, Ba(OH)₂ are soluble

3. Sulfides (S²⁻):

  • Insoluble EXCEPT with Group 1, Group 2, NH₄⁺
  • CuS, FeS, PbS are insoluble
  • But: Na₂S, (NH₄)₂S are soluble

Using Solubility Rules

Example: Will precipitation occur?

\ceAgNO3(aq)+NaCl(aq)>?\ce{AgNO3(aq) + NaCl(aq) -> ?}

Step 1: Identify potential products (switch partners)

  • Ag⁺ with Cl⁻ → AgCl
  • Na⁺ with NO₃⁻ → NaNO₃

Step 2: Check solubility

  • AgCl: Cl⁻ compound with Ag⁺ → Insoluble (exception to Cl⁻ rule)
  • NaNO₃: Group 1 compound → Soluble

Step 3: Write equation

  • AgCl precipitates → (s)
  • NaNO₃ stays dissolved → (aq)

\ceAgNO3(aq)+NaCl(aq)>AgCl(s)+NaNO3(aq)\ce{AgNO3(aq) + NaCl(aq) -> AgCl(s) + NaNO3(aq)}

Yes, precipitation occurs! (AgCl is white precipitate)

Identifying Reaction Types

Strategy: Look for patterns

Synthesis: Multiple → One

  • 2 or more reactants, 1 product
  • Example: \ce2H2+O2>2H2O\ce{2H2 + O2 -> 2H2O}

Decomposition: One → Multiple

  • 1 reactant, 2 or more products
  • Often needs energy input
  • Example: \ce2H2O>2H2+O2\ce{2H2O -> 2H2 + O2}

Single Replacement: Element + Compound → Element + Compound

  • Free element replaces element in compound
  • Check activity series
  • Example: \ceZn+CuSO4>ZnSO4+Cu\ce{Zn + CuSO4 -> ZnSO4 + Cu}

Double Replacement: Compound + Compound → Compound + Compound

  • Ions switch partners
  • Forms precipitate, water, or gas
  • Example: \ceAgNO3+NaCl>AgCl+NaNO3\ce{AgNO3 + NaCl -> AgCl + NaNO3}

Combustion: Substance + O₂ → CO₂ + H₂O

  • Always has O₂ as reactant
  • Produces CO₂ and H₂O (if hydrocarbon)
  • Exothermic, flame
  • Example: \ceCH4+2O2>CO2+2H2O\ce{CH4 + 2O2 -> CO2 + 2H2O}

Note: Some reactions fit multiple categories!

\ce2H2(g)+O2(g)>2H2O(g)\ce{2H2(g) + O2(g) -> 2H2O(g)}

This is both synthesis AND combustion!

Driving Forces for Reactions

Why do reactions occur? What makes them "go"?

1. Formation of Precipitate

Ions in solution combine to form insoluble solid

\cePb2+(aq)+2I(aq)>PbI2(s)\ce{Pb^{2+}(aq) + 2I^-(aq) -> PbI2(s)}

Driving force: Decrease in solubility (ions prefer solid state)

2. Formation of Water

Neutralization reactions

\ceH+(aq)+OH(aq)>H2O(l)\ce{H^+(aq) + OH^-(aq) -> H2O(l)}

Driving force: Formation of very stable H₂O molecule

3. Formation of Gas

Gas escapes from solution

\ce{2H^+(aq) + CO3^{2-}(aq) -> H2O(l) + CO2(g) ^}

Driving force: Entropy increase (gas more disordered than aqueous)

Common gases formed:

  • CO₂ from carbonates + acid
  • H₂S from sulfides + acid
  • NH₃ from ammonium salts + base
  • SO₂ from sulfites + acid

4. Transfer of Electrons (Redox)

Oxidation-reduction reactions

\ceZn(s)+Cu2+(aq)>Zn2+(aq)+Cu(s)\ce{Zn(s) + Cu^{2+}(aq) -> Zn^{2+}(aq) + Cu(s)}

Driving force: Electron transfer to more stable configuration

5. Energy Release

Exothermic reactions (ΔH < 0)

\ceCH4(g)+2O2(g)>CO2(g)+2H2O(g)+energy\ce{CH4(g) + 2O2(g) -> CO2(g) + 2H2O(g) + \text{energy}}

Driving force: System goes to lower energy state

Note: Most spontaneous reactions have at least one driving force!

Summary Table

| Type | Pattern | Example | Key Feature | |------|---------|---------|-------------| | Synthesis | A + B → AB | \ce2Na+Cl2>2NaCl\ce{2Na + Cl2 -> 2NaCl} | Combine | | Decomposition | AB → A + B | \ce2H2O>2H2+O2\ce{2H2O -> 2H2 + O2} | Break apart | | Single Replacement | A + BC → AC + B | \ceZn+CuSO4>ZnSO4+Cu\ce{Zn + CuSO4 -> ZnSO4 + Cu} | One swap | | Double Replacement | AB + CD → AD + CB | \ceAgNO3+NaCl>AgCl+NaNO3\ce{AgNO3 + NaCl -> AgCl + NaNO3} | Two swap | | Combustion | Fuel + O₂ → CO₂ + H₂O | \ceCH4+2O2>CO2+2H2O\ce{CH4 + 2O2 -> CO2 + 2H2O} | Burns with O₂ |

Tips for Success

1. Learn to recognize patterns

  • Count reactants and products
  • Look for free elements
  • Identify ions switching

2. Use activity series

  • Predicts single replacement
  • Higher replaces lower

3. Memorize solubility rules

  • Essential for double replacement
  • Predicts precipitates

4. Check for driving forces

  • Precipitate, water, gas, redox
  • No driving force → likely no reaction

5. Balance equations

  • Atoms must be conserved
  • Check your work!

📚 Practice Problems

1Problem 1easy

Question:

Classify each of the following reactions by type: (a) 2Mg(s) + O₂(g) → 2MgO(s), (b) CaCO₃(s) → CaO(s) + CO₂(g), (c) Zn(s) + 2HCl(aq) → ZnCl₂(aq) + H₂(g), (d) AgNO₃(aq) + NaCl(aq) → AgCl(s) + NaNO₃(aq)

💡 Show Solution

Solution:

Given: Four balanced chemical equations

Find: Classify each reaction type


(a) 2Mg(s) + O₂(g) → 2MgO(s)

Step 1: Count reactants and products

  • Reactants: 2 substances (Mg and O₂)
  • Products: 1 substance (MgO)

Step 2: Identify pattern

  • Multiple reactants → Single product
  • This is COMBINATION pattern

Step 3: Classify

Synthesis (Combination) Reaction\boxed{\text{Synthesis (Combination) Reaction}}

Explanation:

  • Two elements (Mg and O₂) combine to form one compound (MgO)
  • Fits pattern: A + B → AB
  • Also could be classified as combustion (metal + oxygen)

Additional notes:

  • This is formation of ionic compound (metal + nonmetal)
  • Exothermic (releases energy as heat and light)
  • This is how magnesium burns with bright white flame

(b) CaCO₃(s) → CaO(s) + CO₂(g)

Step 1: Count reactants and products

  • Reactants: 1 substance (CaCO₃)
  • Products: 2 substances (CaO and CO₂)

Step 2: Identify pattern

  • Single reactant → Multiple products
  • This is BREAKDOWN pattern

Step 3: Classify

Decomposition Reaction\boxed{\text{Decomposition Reaction}}

Explanation:

  • One compound (CaCO₃) breaks down into two simpler substances
  • Fits pattern: AB → A + B
  • Requires heat (Δ) - thermal decomposition

Additional notes:

  • This is how limestone (CaCO₃) is converted to lime (CaO)
  • Important industrial process
  • Endothermic (requires energy input)
  • CO₂ gas escapes (driving force)

Real-world application:

  • Making cement
  • Occurs in caves forming stalactites/stalagmites (reverse reaction)

(c) Zn(s) + 2HCl(aq) → ZnCl₂(aq) + H₂(g)

Step 1: Count reactants and products

  • Reactants: 2 substances
  • Products: 2 substances

Pattern so far: Could be single or double replacement

Step 2: Look more closely at reactants

  • Zn(s): Free element (metal)
  • HCl(aq): Compound

One reactant is free element!

Step 3: Identify what's happening

Rewrite to see the replacement:

\ceZn+HCl>ZnCl2+H2\ce{Zn + H-Cl -> Zn-Cl2 + H2}

  • Zn replaces H in HCl
  • H is displaced as H₂ gas

Step 4: Classify

Single Replacement (Displacement) Reaction\boxed{\text{Single Replacement (Displacement) Reaction}}

Explanation:

  • Free element (Zn) replaces another element (H) in a compound
  • Fits pattern: A + BC → AC + B
  • Zn is more reactive than H (check activity series)

Verification using activity series:

  • Activity series: ... Zn > Fe > Ni > Sn > Pb > H > Cu > Ag > Au
  • Zn is above H → can displace H
  • Reaction occurs ✓

Additional notes:

  • This produces H₂ gas (bubbling)
  • Common lab reaction
  • Used to test for reactive metals

Observable evidence:

  • Zn metal dissolves
  • H₂ gas bubbles form
  • Solution gets warm (exothermic)

(d) AgNO₃(aq) + NaCl(aq) → AgCl(s) + NaNO₃(aq)

Step 1: Count reactants and products

  • Reactants: 2 compounds
  • Products: 2 compounds

Step 2: Identify what's happening

Look at ions switching:

Reactants:

  • AgNO₃: Ag⁺ and NO₃⁻
  • NaCl: Na⁺ and Cl⁻

Products:

  • AgCl: Ag⁺ and Cl⁻ (Ag switched from NO₃⁻ to Cl⁻)
  • NaNO₃: Na⁺ and NO₃⁻ (Na switched from Cl⁻ to NO₃⁻)

Both cations switched anions!

Pattern:

  • AB + CD → AD + CB
  • Ag⁺NO₃⁻ + Na⁺Cl⁻ → Ag⁺Cl⁻ + Na⁺NO₃⁻

Step 3: Classify

Double Replacement (Metathesis) Reaction\boxed{\text{Double Replacement (Metathesis) Reaction}}

Explanation:

  • Two compounds exchange ions
  • Cations and anions "switch partners"
  • Forms precipitate AgCl(s) - driving force!

Step 4: Verify precipitation using solubility rules

Check AgCl:

  • Chloride (Cl⁻) compound
  • Most chlorides soluble...
  • BUT AgCl is exception (Ag⁺ is insoluble with Cl⁻)
  • AgCl is insoluble → precipitates ✓

Check NaNO₃:

  • Nitrate (NO₃⁻) compound
  • All nitrates soluble
  • NaNO₃ stays dissolved

Additional notes:

  • AgCl is white precipitate
  • This is classic precipitation reaction
  • Used in qualitative analysis to test for Cl⁻ ions

Observable evidence:

  • White cloudy precipitate forms immediately
  • Solution becomes opaque

Summary Table:

| Equation | Type | Key Feature | |----------|------|-------------| | (a) 2Mg + O₂ → 2MgO | Synthesis | 2 reactants → 1 product | | (b) CaCO₃ → CaO + CO₂ | Decomposition | 1 reactant → 2 products | | (c) Zn + 2HCl → ZnCl₂ + H₂ | Single Replacement | Free element replaces H | | (d) AgNO₃ + NaCl → AgCl + NaNO₃ | Double Replacement | Ions switch, precipitate forms |

Key skills practiced:

  1. Counting reactants/products
  2. Recognizing free elements
  3. Identifying ion exchanges
  4. Using activity series
  5. Applying solubility rules

Strategy for identifying reaction types:

  1. Count substances (reactants and products)
  2. Look for free elements
  3. Check if ions are switching
  4. Identify driving forces (precipitate, gas, water)

2Problem 2medium

Question:

Predict the products and write balanced equations for each reaction. If no reaction occurs, write "NR". (a) Cl₂(g) + NaBr(aq) →, (b) Cu(s) + HCl(aq) →, (c) Ba(NO₃)₂(aq) + K₂SO₄(aq) →, (d) C₃H₈(g) + O₂(g) →

💡 Show Solution

Solution:

Task: Predict products, write balanced equations, or indicate no reaction


(a) Cl₂(g) + NaBr(aq) →

Step 1: Identify reaction type

  • Cl₂: Free element (halogen)
  • NaBr: Compound
  • Pattern: Element + Compound

This is SINGLE REPLACEMENT

Step 2: Determine if reaction occurs

Check halogen activity series:

  • F₂ > Cl₂ > Br₂ > I₂

Cl₂ is above Br₂ → Cl₂ is more reactive

  • Cl₂ can displace Br⁻ from compounds
  • Reaction occurs!

Step 3: Predict products

Cl₂ replaces Br in NaBr:

  • Na⁺ pairs with Cl⁻ → NaCl
  • Br is displaced as Br₂

Unbalanced:

\ceCl2(g)+NaBr(aq)>NaCl(aq)+Br2(l)\ce{Cl2(g) + NaBr(aq) -> NaCl(aq) + Br2(l)}

Step 4: Balance equation

Check atoms:

  • Left: 2 Cl, 1 Na, 1 Br
  • Right: 1 Cl, 1 Na, 2 Br

Br not balanced!

Balance Br: Need 2 NaBr on left

\ceCl2(g)+2NaBr(aq)>NaCl(aq)+Br2(l)\ce{Cl2(g) + 2NaBr(aq) -> NaCl(aq) + Br2(l)}

Check atoms:

  • Left: 2 Cl, 2 Na, 2 Br
  • Right: 1 Cl, 1 Na, 2 Br

Cl and Na not balanced!

Balance Cl and Na: Need 2 NaCl on right

\ceCl2(g)+2NaBr(aq)>2NaCl(aq)+Br2(l)\ce{Cl2(g) + 2NaBr(aq) -> 2NaCl(aq) + Br2(l)}

Final check:

  • Left: 2 Cl, 2 Na, 2 Br ✓
  • Right: 2 Cl, 2 Na, 2 Br ✓

Answer (a):

\ceCl2(g)+2NaBr(aq)>2NaCl(aq)+Br2(l)\boxed{\ce{Cl2(g) + 2NaBr(aq) -> 2NaCl(aq) + Br2(l)}}

Observation: Solution turns brown/orange (color of Br₂)


(b) Cu(s) + HCl(aq) →

Step 1: Identify reaction type

  • Cu: Free element (metal)
  • HCl: Compound (acid)
  • Pattern: Element + Compound

This would be SINGLE REPLACEMENT if it occurs

Step 2: Check if reaction occurs

Use metal activity series:

  • ... Zn > Fe > Ni > Sn > Pb > H > Cu > Ag > Au

Cu is BELOW H in activity series

  • Cu is less reactive than H
  • Cu cannot displace H from acids
  • NO REACTION

Answer (b):

\ceCu(s)+HCl(aq)>NR (No Reaction)\boxed{\ce{Cu(s) + HCl(aq) -> NR \text{ (No Reaction)}}}

Explanation:

  • Copper is too unreactive (noble)
  • Cannot displace hydrogen from HCl
  • This is why copper pipes are safe for water systems

Contrast:

  • If we used Zn instead: \ceZn+2HCl>ZnCl2+H2\ce{Zn + 2HCl -> ZnCl2 + H2} ✓ (Zn above H)
  • If we used Au: \ceAu+HCl>NR\ce{Au + HCl -> NR} (Au below H)

To dissolve copper, need:

  • Oxidizing acid (HNO₃ or hot concentrated H₂SO₄)
  • These work by different mechanism (not simple single replacement)

(c) Ba(NO₃)₂(aq) + K₂SO₄(aq) →

Step 1: Identify reaction type

  • Both are ionic compounds in solution
  • Pattern: Compound + Compound

This is DOUBLE REPLACEMENT

Step 2: Predict products (switch partners)

Identify ions:

  • Ba(NO₃)₂: Ba²⁺ and NO₃⁻
  • K₂SO₄: K⁺ and SO₄²⁻

Switch partners:

  • Ba²⁺ with SO₄²⁻ → BaSO₄
  • K⁺ with NO₃⁻ → KNO₃

Unbalanced:

\ceBa(NO3)2(aq)+K2SO4(aq)>BaSO4+KNO3\ce{Ba(NO3)2(aq) + K2SO4(aq) -> BaSO4 + KNO3}

Step 3: Check if reaction occurs (solubility)

Check BaSO₄:

  • Sulfate (SO₄²⁻) compound
  • Most sulfates soluble...
  • BUT BaSO₄ is exception (Ba²⁺ makes insoluble sulfate)
  • BaSO₄ is INSOLUBLEprecipitates!

Check KNO₃:

  • Nitrate (NO₃⁻) compound
  • All nitrates soluble
  • KNO₃ stays dissolved

Reaction occurs because precipitate forms!

Step 4: Assign states

\ceBa(NO3)2(aq)+K2SO4(aq)>BaSO4(s)+KNO3(aq)\ce{Ba(NO3)2(aq) + K2SO4(aq) -> BaSO4(s) + KNO3(aq)}

Step 5: Balance equation

Check atoms:

  • Ba: 1 left, 1 right ✓
  • N: 2 left, 1 right ✗
  • O: 6 + 4 = 10 left, 4 + 3 = 7 right ✗
  • K: 2 left, 1 right ✗
  • S: 1 left, 1 right ✓

Balance K and N: Need 2 KNO₃

\ceBa(NO3)2(aq)+K2SO4(aq)>BaSO4(s)+2KNO3(aq)\ce{Ba(NO3)2(aq) + K2SO4(aq) -> BaSO4(s) + 2KNO3(aq)}

Final check:

  • Ba: 1, 1 ✓
  • N: 2, 2 ✓
  • O: 10, 10 ✓
  • K: 2, 2 ✓
  • S: 1, 1 ✓

Answer (c):

\ceBa(NO3)2(aq)+K2SO4(aq)>BaSO4(s)+2KNO3(aq)\boxed{\ce{Ba(NO3)2(aq) + K2SO4(aq) -> BaSO4(s) + 2KNO3(aq)}}

Observation: White precipitate (BaSO₄) forms immediately

Note: BaSO₄ is used in medical imaging (barium meals)


(d) C₃H₈(g) + O₂(g) →

Step 1: Identify reaction type

  • C₃H₈: Hydrocarbon (propane)
  • O₂: Oxygen gas
  • Pattern: Hydrocarbon + O₂

This is COMBUSTION

Step 2: Predict products

Complete combustion of hydrocarbon:

  • C → CO₂
  • H → H₂O
  • Energy released

\ceC3H8(g)+O2(g)>CO2(g)+H2O(g)\ce{C3H8(g) + O2(g) -> CO2(g) + H2O(g)}

Step 3: Balance equation

Strategy: Balance in order C, H, then O

Balance C: 3 carbons left → need 3 CO₂

\ceC3H8+O2>3CO2+H2O\ce{C3H8 + O2 -> 3CO2 + H2O}

Balance H: 8 hydrogens left → need 4 H₂O (each has 2 H)

\ceC3H8+O2>3CO2+4H2O\ce{C3H8 + O2 -> 3CO2 + 4H2O}

Balance O:

  • Right side: 3 CO₂ = 6 O, plus 4 H₂O = 4 O
  • Total O on right = 6 + 4 = 10 O atoms
  • Need 10 O atoms on left
  • Each O₂ has 2 O → need 10/2 = 5 O₂

\ceC3H8+5O2>3CO2+4H2O\ce{C3H8 + 5O2 -> 3CO2 + 4H2O}

Final check:

  • C: 3, 3 ✓
  • H: 8, 8 ✓
  • O: 10, 10 ✓

Answer (d):

\ceC3H8(g)+5O2(g)>3CO2(g)+4H2O(g)+energy\boxed{\ce{C3H8(g) + 5O2(g) -> 3CO2(g) + 4H2O(g) + \text{energy}}}

Additional information:

  • This is complete combustion (sufficient O₂)
  • Highly exothermic (releases heat and light)
  • Blue flame when burning
  • Used in gas grills, camping stoves, torches

If insufficient O₂ (incomplete combustion):

\ce2C3H8+7O2>6CO+8H2O\ce{2C3H8 + 7O2 -> 6CO + 8H2O} (produces toxic CO)

Or:

\ceC3H8+2O2>3C+4H2O\ce{C3H8 + 2O2 -> 3C + 4H2O} (produces soot)

Yellow/orange flame indicates incomplete combustion


Summary of Answers:

| Reaction | Balanced Equation | Type | |----------|-------------------|------| | (a) | \ceCl2+2NaBr>2NaCl+Br2\ce{Cl2 + 2NaBr -> 2NaCl + Br2} | Single replacement ✓ | | (b) | \ceCu+HCl>NR\ce{Cu + HCl -> NR} | Would be SR, but no reaction | | (c) | \ceBa(NO3)2+K2SO4>BaSO4(s)+2KNO3\ce{Ba(NO3)2 + K2SO4 -> BaSO4(s) + 2KNO3} | Double replacement ✓ | | (d) | \ceC3H8+5O2>3CO2+4H2O\ce{C3H8 + 5O2 -> 3CO2 + 4H2O} | Combustion ✓ |

Key concepts applied:

  1. Activity series (halogens and metals)
  2. Solubility rules
  3. Combustion product prediction
  4. Balancing equations
  5. State symbols

3Problem 3hard

Question:

A student adds a piece of aluminum metal to a solution containing copper(II) sulfate. A reddish-brown solid forms on the aluminum, and the blue solution fades. (a) Write the balanced molecular equation for this reaction. (b) Identify the oxidation and reduction half-reactions. (c) Calculate the mass of copper that forms when 5.40 g of aluminum reacts with excess CuSO₄. (Al = 27.0 g/mol, Cu = 63.5 g/mol)

💡 Show Solution

Solution:

Given:

  • Aluminum metal (Al) added to copper(II) sulfate solution (CuSO₄)
  • Observations: Reddish-brown solid forms, blue solution fades
  • Mass of Al = 5.40 g
  • Molar masses: Al = 27.0 g/mol, Cu = 63.5 g/mol

Find: (a) Balanced equation, (b) Half-reactions, (c) Mass of Cu formed


Part (a): Write balanced molecular equation

Step 1: Identify reaction type

  • Al: Free element (metal)
  • CuSO₄: Compound
  • Pattern: Metal + Compound

This is SINGLE REPLACEMENT

Step 2: Check activity series

Metal activity series:

  • ... Mg > Al > Zn > Fe > ... > Cu > Ag > Au

Al is ABOVE Cu → Al is more reactive

  • Al can displace Cu from compounds
  • Reaction occurs!

Step 3: Predict products

Al replaces Cu in CuSO₄:

  • Al pairs with SO₄²⁻ → Al₂(SO₄)₃
  • Cu is displaced as Cu metal

Why Al₂(SO₄)₃?

  • Al forms Al³⁺ ions
  • SO₄²⁻ is 2- charge
  • Need 2 Al³⁺ and 3 SO₄²⁻ to balance charges
  • Formula: Al₂(SO₄)₃

Unbalanced equation:

\ceAl(s)+CuSO4(aq)>Al2(SO4)3(aq)+Cu(s)\ce{Al(s) + CuSO4(aq) -> Al2(SO4)3(aq) + Cu(s)}

Step 4: Balance the equation

Method: Balance atoms systematically

Current atoms:

  • Al: 1 left, 2 right → need 2 Al on left
  • Cu: 1 left, 1 right → balanced for now
  • S: 1 left, 3 right → need 3 CuSO₄ on left
  • O: 4 left, 12 right → will balance with sulfates

Try balancing:

\ce2Al+3CuSO4>Al2(SO4)3+Cu\ce{2Al + 3CuSO4 -> Al2(SO4)3 + Cu}

Check Cu: 3 left, 1 right → need 3 Cu on right

\ce2Al(s)+3CuSO4(aq)>Al2(SO4)3(aq)+3Cu(s)\ce{2Al(s) + 3CuSO4(aq) -> Al2(SO4)3(aq) + 3Cu(s)}

Final atom check:

  • Al: 2, 2 ✓
  • Cu: 3, 3 ✓
  • S: 3, 3 ✓
  • O: 12, 12 ✓

Answer (a):

\ce2Al(s)+3CuSO4(aq)>Al2(SO4)3(aq)+3Cu(s)\boxed{\ce{2Al(s) + 3CuSO4(aq) -> Al2(SO4)3(aq) + 3Cu(s)}}

Verification of observations:

  • Reddish-brown solid: Cu metal forming on Al ✓
  • Blue solution fades: Cu²⁺ ions (blue) being reduced to Cu(s) ✓

Part (b): Identify oxidation and reduction half-reactions

Step 1: Determine oxidation states

Reactants:

  • Al(s): 0 (free element)
  • CuSO₄: Cu is +2, S is +6, O is -2

Products:

  • Al₂(SO₄)₃: Al is +3, S is +6, O is -2
  • Cu(s): 0 (free element)

Step 2: Identify changes

Aluminum:

  • Al: 0 → +3
  • Loses 3 electrons
  • Oxidation (LEO: Lose Electrons = Oxidation)

Copper:

  • Cu: +2 → 0
  • Gains 2 electrons
  • Reduction (GER: Gain Electrons = Reduction)

Step 3: Write half-reactions

Oxidation half-reaction (Al loses electrons):

\ceAl(s)>Al3+(aq)+3e\ce{Al(s) -> Al^{3+}(aq) + 3e^-}

Al is oxidized (oxidation number increases)

  • Loses 3 electrons
  • Becomes Al³⁺

Reduction half-reaction (Cu gains electrons):

\ceCu2+(aq)+2e>Cu(s)\ce{Cu^{2+}(aq) + 2e^- -> Cu(s)}

Cu²⁺ is reduced (oxidation number decreases)

  • Gains 2 electrons
  • Becomes Cu metal

Answer (b):

Oxidation: \ceAl(s)>Al3+(aq)+3e\boxed{\text{Oxidation: } \ce{Al(s) -> Al^{3+}(aq) + 3e^-}}

Reduction: \ceCu2+(aq)+2e>Cu(s)\boxed{\text{Reduction: } \ce{Cu^{2+}(aq) + 2e^- -> Cu(s)}}

Step 4: Verify overall equation

To get overall reaction, balance electrons:

  • Oxidation produces 3 e⁻ per Al
  • Reduction uses 2 e⁻ per Cu
  • LCM of 3 and 2 = 6

Multiply to balance electrons:

  • Oxidation × 2: \ce2Al>2Al3++6e\ce{2Al -> 2Al^{3+} + 6e^-}
  • Reduction × 3: \ce3Cu2++6e>3Cu\ce{3Cu^{2+} + 6e^- -> 3Cu}

Add half-reactions:

\ce2Al+3Cu2++6e>2Al3++3Cu+6e\ce{2Al + 3Cu^{2+} + 6e^- -> 2Al^{3+} + 3Cu + 6e^-}

Cancel electrons:

\ce2Al+3Cu2+>2Al3++3Cu\ce{2Al + 3Cu^{2+} -> 2Al^{3+} + 3Cu}

Add spectator ions (SO₄²⁻):

\ce2Al+3CuSO4>Al2(SO4)3+3Cu\ce{2Al + 3CuSO4 -> Al2(SO4)3 + 3Cu}

Matches our answer from part (a)!

Terminology:

  • Al is the reducing agent (causes reduction of Cu²⁺, gets oxidized itself)
  • Cu²⁺ is the oxidizing agent (causes oxidation of Al, gets reduced itself)

Part (c): Calculate mass of Cu formed

Given:

  • Mass of Al = 5.40 g
  • Excess CuSO₄ (Al is limiting reactant)

Step 1: Convert mass of Al to moles

nAl=massmolar massn_{Al} = \frac{\text{mass}}{\text{molar mass}}

nAl=5.40 g27.0 g/mol=0.200 mol Aln_{Al} = \frac{5.40 \text{ g}}{27.0 \text{ g/mol}} = 0.200 \text{ mol Al}

Step 2: Use stoichiometry to find moles of Cu

From balanced equation:

\ce2Al+3CuSO4>Al2(SO4)3+3Cu\ce{2Al + 3CuSO4 -> Al2(SO4)3 + 3Cu}

Mole ratio: 2 mol Al : 3 mol Cu

2 mol Al3 mol Cu\frac{2 \text{ mol Al}}{3 \text{ mol Cu}}

Calculate moles of Cu:

nCu=0.200 mol Al×3 mol Cu2 mol Aln_{Cu} = 0.200 \text{ mol Al} \times \frac{3 \text{ mol Cu}}{2 \text{ mol Al}}

nCu=0.200×32=0.300 mol Cun_{Cu} = 0.200 \times \frac{3}{2} = 0.300 \text{ mol Cu}

Step 3: Convert moles of Cu to mass

massCu=nCu×MCu\text{mass}_{Cu} = n_{Cu} \times M_{Cu}

massCu=0.300 mol×63.5 g/mol\text{mass}_{Cu} = 0.300 \text{ mol} \times 63.5 \text{ g/mol}

massCu=19.05 g\text{mass}_{Cu} = 19.05 \text{ g}

massCu=19.1 g\text{mass}_{Cu} = 19.1 \text{ g} (3 sig figs)

Answer (c):

19.1 g Cu\boxed{19.1 \text{ g Cu}}


Summary of Solution:

Calculation flow:

5.40 g Al÷27.00.200 mol Al×320.300 mol Cu×63.519.1 g Cu5.40 \text{ g Al} \xrightarrow{÷27.0} 0.200 \text{ mol Al} \xrightarrow{×\frac{3}{2}} 0.300 \text{ mol Cu} \xrightarrow{×63.5} 19.1 \text{ g Cu}

Stoichiometry summary:

| Substance | Molar Mass | Moles | Mass | |-----------|------------|-------|------| | Al (reactant) | 27.0 g/mol | 0.200 mol | 5.40 g (given) | | Cu (product) | 63.5 g/mol | 0.300 mol | 19.1 g (answer) |

Mole ratio check:

  • nCunAl=0.3000.200=32\frac{n_{Cu}}{n_{Al}} = \frac{0.300}{0.200} = \frac{3}{2} ✓ (matches equation)

Additional Insights:

Why does this reaction occur?

  1. Activity series: Al more reactive than Cu
  2. Electron transfer: Al readily loses electrons (good reducing agent)
  3. Energy favorable: Overall reaction exothermic

Practical applications:

  • Demonstrates reactivity of metals
  • Shows electron transfer visually
  • Thermite reaction (Fe₂O₃ + Al) uses same principle

Observable changes:

  • Al surface becomes pitted/dissolved
  • Reddish-brown Cu deposits on Al
  • Blue Cu²⁺ solution becomes colorless
  • Solution may get warm (exothermic)

Safety notes:

  • Reaction is exothermic
  • If large amounts used, significant heat generated
  • Al₂(SO₄)₃ remains dissolved (not visible)

Percent yield consideration:

  • Calculated: 19.1 g (theoretical yield)
  • Actual yield in lab might be less
  • Some Cu might not adhere to Al
  • Some might remain suspended in solution

Mass comparison:

  • Started with 5.40 g Al
  • Produced 19.1 g Cu
  • Mass of Cu > mass of Al used
  • This makes sense: Cu has larger molar mass (63.5 vs 27.0)
  • Even though we make fewer moles of Cu (0.300 vs 0.200 used), the mass is greater

Complete answer check: ✓ Equation balanced ✓ Half-reactions identified correctly ✓ Stoichiometry calculation accurate ✓ Significant figures appropriate (3 sig figs)