Ratio and Root Tests

Testing convergence with ratios and roots

🎯 Ratio and Root Tests

The Ratio Test

The Ratio Test is especially useful for series with factorials or exponentials!

Given an\sum a_n with an>0a_n > 0, compute:

L=limnan+1anL = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}

Then:

  • If L<1L < 1: series converges absolutely
  • If L>1L > 1 (or L=L = \infty): series diverges
  • If L=1L = 1: inconclusive (test tells you nothing!)

💡 Key Idea: Compare each term to the previous one. If ratio approaches something less than 1, terms shrink fast enough!


Why It Works

If an+1anr<1\frac{a_{n+1}}{a_n} \to r < 1, then eventually:

an+1rana_{n+1} \approx r \cdot a_n

This behaves like a geometric series with ratio rr!

Geometric series with r<1|r| < 1 converge.


Example 1: Factorial Series

Test n=1n!3n\sum_{n=1}^{\infty} \frac{n!}{3^n} for convergence.

Step 1: Set up ratio

an=n!3n,an+1=(n+1)!3n+1a_n = \frac{n!}{3^n}, \quad a_{n+1} = \frac{(n+1)!}{3^{n+1}}


Step 2: Compute an+1an\frac{a_{n+1}}{a_n}

an+1an=(n+1)!3n+1n!3n\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)!}{3^{n+1}}}{\frac{n!}{3^n}}

=(n+1)!3n+13nn!= \frac{(n+1)!}{3^{n+1}} \cdot \frac{3^n}{n!}

=(n+1)!n!3n3n+1= \frac{(n+1)!}{n!} \cdot \frac{3^n}{3^{n+1}}

=(n+1)13=n+13= (n+1) \cdot \frac{1}{3} = \frac{n+1}{3}


Step 3: Take limit

L=limnn+13=L = \lim_{n \to \infty} \frac{n+1}{3} = \infty


Step 4: Conclusion

Since L=>1L = \infty > 1:

By Ratio Test, the series diverges.

(Factorials grow faster than exponentials!)


Example 2: Exponential Series

Test n=02nn!\sum_{n=0}^{\infty} \frac{2^n}{n!} for convergence.

Step 1: Set up

an=2nn!,an+1=2n+1(n+1)!a_n = \frac{2^n}{n!}, \quad a_{n+1} = \frac{2^{n+1}}{(n+1)!}


Step 2: Compute ratio

an+1an=2n+1(n+1)!2nn!\frac{a_{n+1}}{a_n} = \frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^n}{n!}}

=2n+1(n+1)!n!2n= \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n}

=2n+12nn!(n+1)!= \frac{2^{n+1}}{2^n} \cdot \frac{n!}{(n+1)!}

=21n+1=2n+1= 2 \cdot \frac{1}{n+1} = \frac{2}{n+1}


Step 3: Take limit

L=limn2n+1=0L = \lim_{n \to \infty} \frac{2}{n+1} = 0


Step 4: Conclusion

Since L=0<1L = 0 < 1:

By Ratio Test, the series converges absolutely.

(This is actually the Taylor series for e2e^2!)


Example 3: When Ratio Test Fails

Test n=11n2\sum_{n=1}^{\infty} \frac{1}{n^2} using Ratio Test.

Compute ratio:

an+1an=1(n+1)21n2=n2(n+1)2\frac{a_{n+1}}{a_n} = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2}

=(nn+1)2=(11+1n)2= \left(\frac{n}{n+1}\right)^2 = \left(\frac{1}{1+\frac{1}{n}}\right)^2


Take limit:

L=limn(11+1n)2=1L = \lim_{n \to \infty} \left(\frac{1}{1+\frac{1}{n}}\right)^2 = 1


Conclusion: L=1L = 1, so Ratio Test is inconclusive!

(But we know from p-series test that this converges.)

⚠️ When L=1L = 1, use a different test!


Ratio Test for Series with Powers

For anxn\sum a_n x^n (power series), the Ratio Test finds the radius of convergence!

We'll cover this more in the Power Series topic.


The Root Test

Given an\sum a_n with an0a_n \geq 0, compute:

L=limnann=limn(an)1/nL = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} (a_n)^{1/n}

Then:

  • If L<1L < 1: series converges absolutely
  • If L>1L > 1 (or L=L = \infty): series diverges
  • If L=1L = 1: inconclusive

When to Use Root Test

Best for series with nnth powers:

  • (something)n(\text{something})^n
  • Terms like (2n+13n2)n\left(\frac{2n+1}{3n-2}\right)^n

Example 4: Use Root Test

Test n=1(2n3n+1)n\sum_{n=1}^{\infty} \left(\frac{2n}{3n+1}\right)^n for convergence.

Step 1: Compute ann\sqrt[n]{a_n}

an=(2n3n+1)na_n = \left(\frac{2n}{3n+1}\right)^n

ann=[(2n3n+1)n]1/n=2n3n+1\sqrt[n]{a_n} = \left[\left(\frac{2n}{3n+1}\right)^n\right]^{1/n} = \frac{2n}{3n+1}


Step 2: Take limit

L=limn2n3n+1=limn23+1n=23L = \lim_{n \to \infty} \frac{2n}{3n+1} = \lim_{n \to \infty} \frac{2}{3 + \frac{1}{n}} = \frac{2}{3}


Step 3: Conclusion

Since L=23<1L = \frac{2}{3} < 1:

By Root Test, the series converges absolutely.


Example 5: Root Test with Exponentials

Test n=1nn3n2\sum_{n=1}^{\infty} \frac{n^n}{3^{n^2}} for convergence.

Step 1: Compute ann\sqrt[n]{a_n}

an=nn3n2a_n = \frac{n^n}{3^{n^2}}

ann=(nn3n2)1/n=n3n\sqrt[n]{a_n} = \left(\frac{n^n}{3^{n^2}}\right)^{1/n} = \frac{n}{3^n}


Step 2: Take limit

L=limnn3nL = \lim_{n \to \infty} \frac{n}{3^n}

This is \frac{\infty}{\infty} form. Use L'Hôpital's Rule:

=limn13nln3=0= \lim_{n \to \infty} \frac{1}{3^n \ln 3} = 0

(Exponentials grow much faster than polynomials!)


Step 3: Conclusion

Since L=0<1L = 0 < 1:

By Root Test, the series converges absolutely.


Ratio Test vs Root Test

Ratio Test:

  • Best for factorials: n!n!, (2n)!(2n)!
  • Best for products: n2nn \cdot 2^n
  • Generally easier to compute

Root Test:

  • Best for nnth powers: (stuff)n(\text{stuff})^n
  • Best when taking nnth root simplifies nicely
  • Less commonly used

💡 If both apply, use Ratio Test (usually easier)!


Important Limits for These Tests

Useful limits to know:

limnn!nn=0\lim_{n \to \infty} \frac{n!}{n^n} = 0

limnnkan=0\lim_{n \to \infty} \frac{n^k}{a^n} = 0 (for any kk and a>1a > 1)

limnn1/n=1\lim_{n \to \infty} n^{1/n} = 1

limn(1+1n)n=e\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e


Example 6: Ratio Test with Powers

Test n=15nn2n!\sum_{n=1}^{\infty} \frac{5^n n^2}{n!} for convergence.

Compute ratio:

an+1an=5n+1(n+1)2(n+1)!5nn2n!\frac{a_{n+1}}{a_n} = \frac{\frac{5^{n+1}(n+1)^2}{(n+1)!}}{\frac{5^n n^2}{n!}}

=5n+1(n+1)2(n+1)!n!5nn2= \frac{5^{n+1}(n+1)^2}{(n+1)!} \cdot \frac{n!}{5^n n^2}

=5(n+1)2n2n!(n+1)!= 5 \cdot \frac{(n+1)^2}{n^2} \cdot \frac{n!}{(n+1)!}

=5(n+1)2n21n+1= 5 \cdot \frac{(n+1)^2}{n^2} \cdot \frac{1}{n+1}

=5n+1n2= 5 \cdot \frac{n+1}{n^2}

Wait, let me recalculate:

=5(n+1n)21n+1=5(n+1)n2= 5 \cdot \left(\frac{n+1}{n}\right)^2 \cdot \frac{1}{n+1} = \frac{5(n+1)}{n^2}

Hmm, that's not right either. Let me be more careful:

(n+1)2n!n2(n+1)!=(n+1)2n21n+1=n+1n2\frac{(n+1)^2 n!}{n^2 (n+1)!} = \frac{(n+1)^2}{n^2} \cdot \frac{1}{n+1} = \frac{n+1}{n^2}

So: an+1an=5n+1n2\frac{a_{n+1}}{a_n} = 5 \cdot \frac{n+1}{n^2}

Actually, let me recalculate more carefully:

(n+1)!n!=n+1\frac{(n+1)!}{n!} = n+1

So: n!(n+1)!=1n+1\frac{n!}{(n+1)!} = \frac{1}{n+1}

an+1an=5(n+1)2n2(n+1)=5n+1n2\frac{a_{n+1}}{a_n} = 5 \cdot \frac{(n+1)^2}{n^2(n+1)} = 5 \cdot \frac{n+1}{n^2}

Taking limit: This goes to 0.

Actually, let me redo this completely:

an+1an=5(n+1)2n!(n+1)!n21=5(n+1)2n!(n+1)n!n2=5(n+1)n2\frac{a_{n+1}}{a_n} = \frac{5 \cdot (n+1)^2 \cdot n!}{(n+1)! \cdot n^2 \cdot 1} = \frac{5(n+1)^2 n!}{(n+1) \cdot n! \cdot n^2} = \frac{5(n+1)}{n^2}

L=limn5(n+1)n2=limn5nn2=limn5n=0L = \lim_{n \to \infty} \frac{5(n+1)}{n^2} = \lim_{n \to \infty} \frac{5n}{n^2} = \lim_{n \to \infty} \frac{5}{n} = 0

Since L=0<1L = 0 < 1, the series converges absolutely.


⚠️ Common Mistakes

Mistake 1: Wrong Ratio Direction

WRONG: anan+1\frac{a_n}{a_{n+1}} (backwards!)

RIGHT: an+1an\frac{a_{n+1}}{a_n} (next term over current term)


Mistake 2: Simplifying Factorials Wrong

(n+1)!=(n+1)n!(n+1)! = (n+1) \cdot n!, NOT n!+1n! + 1

(n+1)!n!=n+1\frac{(n+1)!}{n!} = n+1


Mistake 3: Thinking L=1L=1 Means Diverges

When L=1L = 1, the test is inconclusive!

Could converge or diverge - need a different test.


Mistake 4: Forgetting Absolute Value for Negative Terms

Ratio and Root Tests test for absolute convergence.

If series has negative terms, these tests tell you about an\sum |a_n|.


📝 Practice Strategy

  1. Look for factorials: n!n!, (2n)!(2n)! → use Ratio Test
  2. Look for nnth powers: (stuff)n(\text{stuff})^n → consider Root Test
  3. Simplify ratio carefully: Cancel common factors, watch factorials
  4. Remember: L<1L < 1 converges, L>1L > 1 diverges, L=1L = 1 inconclusive
  5. When L=1L = 1: Try comparison test, integral test, or p-series
  6. For limits: Use L'Hôpital's if needed, remember nkan0\frac{n^k}{a^n} \to 0
  7. Check your algebra: Factorial mistakes are very common!

📚 Practice Problems

1Problem 1hard

Question:

Use the Ratio Test to determine if n=1(2n)!(n!)2\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} converges.

💡 Show Solution

Step 1: Set up the ratio

an=(2n)!(n!)2,an+1=(2(n+1))!((n+1)!)2=(2n+2)!((n+1)!)2a_n = \frac{(2n)!}{(n!)^2}, \quad a_{n+1} = \frac{(2(n+1))!}{((n+1)!)^2} = \frac{(2n+2)!}{((n+1)!)^2}


Step 2: Compute an+1an\frac{a_{n+1}}{a_n}

an+1an=(2n+2)!((n+1)!)2(n!)2(2n)!\frac{a_{n+1}}{a_n} = \frac{(2n+2)!}{((n+1)!)^2} \cdot \frac{(n!)^2}{(2n)!}

=(2n+2)!(2n)!(n!)2((n+1)!)2= \frac{(2n+2)!}{(2n)!} \cdot \frac{(n!)^2}{((n+1)!)^2}


Step 3: Simplify factorials

(2n+2)!=(2n+2)(2n+1)(2n)!(2n+2)! = (2n+2)(2n+1)(2n)!

(n+1)!=(n+1)n!(n+1)! = (n+1) \cdot n!

So: (2n+2)!(2n)!=(2n+2)(2n+1)\frac{(2n+2)!}{(2n)!} = (2n+2)(2n+1)

(n!)2((n+1)!)2=(n!(n+1)!)2=1(n+1)2\frac{(n!)^2}{((n+1)!)^2} = \left(\frac{n!}{(n+1)!}\right)^2 = \frac{1}{(n+1)^2}


Step 4: Combine

an+1an=(2n+2)(2n+1)1(n+1)2\frac{a_{n+1}}{a_n} = (2n+2)(2n+1) \cdot \frac{1}{(n+1)^2}

=2(n+1)(2n+1)(n+1)2=2(2n+1)n+1= \frac{2(n+1)(2n+1)}{(n+1)^2} = \frac{2(2n+1)}{n+1}

=4n+2n+1= \frac{4n + 2}{n+1}


Step 5: Take limit

L=limn4n+2n+1=limn4+2n1+1n=41=4L = \lim_{n \to \infty} \frac{4n+2}{n+1} = \lim_{n \to \infty} \frac{4 + \frac{2}{n}}{1 + \frac{1}{n}} = \frac{4}{1} = 4


Step 6: Conclusion

Since L=4>1L = 4 > 1:

By the Ratio Test, the series diverges.

2Problem 2medium

Question:

Use the Ratio Test to determine whether the series converges or diverges:

n=1n!3n\sum_{n=1}^{\infty} \frac{n!}{3^n}

💡 Show Solution

Solution:

Ratio Test: L=limnan+1anL = \lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right|

Let an=n!3na_n = \frac{n!}{3^n}

an+1=(n+1)!3n+1a_{n+1} = \frac{(n+1)!}{3^{n+1}}

an+1an=(n+1)!3n+13nn!\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{3^{n+1}} \cdot \frac{3^n}{n!}

=(n+1)!3n3n+1n!= \frac{(n+1)! \cdot 3^n}{3^{n+1} \cdot n!}

=(n+1)n!3n!=n+13= \frac{(n+1) \cdot n!}{3 \cdot n!} = \frac{n+1}{3}

L=limnn+13=L = \lim_{n \to \infty} \frac{n+1}{3} = \infty

Since L=>1L = \infty > 1, by the Ratio Test, the series diverges.

3Problem 3expert

Question:

Determine if n=1nnn!3n\sum_{n=1}^{\infty} \frac{n^n}{n! \cdot 3^n} converges using the Ratio Test.

💡 Show Solution

Step 1: Set up

an=nnn!3n,an+1=(n+1)n+1(n+1)!3n+1a_n = \frac{n^n}{n! \cdot 3^n}, \quad a_{n+1} = \frac{(n+1)^{n+1}}{(n+1)! \cdot 3^{n+1}}


Step 2: Compute ratio

an+1an=(n+1)n+1(n+1)!3n+1n!3nnn\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)! \cdot 3^{n+1}} \cdot \frac{n! \cdot 3^n}{n^n}

=(n+1)n+1nnn!(n+1)!3n3n+1= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{n!}{(n+1)!} \cdot \frac{3^n}{3^{n+1}}

=(n+1)n+1nn1n+113= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{1}{n+1} \cdot \frac{1}{3}

=(n+1)nnn13= \frac{(n+1)^n}{n^n} \cdot \frac{1}{3}

=13(n+1n)n=13(1+1n)n= \frac{1}{3}\left(\frac{n+1}{n}\right)^n = \frac{1}{3}\left(1 + \frac{1}{n}\right)^n


Step 3: Take limit

L=limn13(1+1n)nL = \lim_{n \to \infty} \frac{1}{3}\left(1 + \frac{1}{n}\right)^n

We know: limn(1+1n)n=e\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e

L=e32.71830.906L = \frac{e}{3} \approx \frac{2.718}{3} \approx 0.906


Step 4: Conclusion

Since L=e3<1L = \frac{e}{3} < 1:

By the Ratio Test, the series converges absolutely.

4Problem 4hard

Question:

Use the Ratio Test to determine convergence:

n=12nn!nn\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}

💡 Show Solution

Solution:

Let an=2nn!nna_n = \frac{2^n n!}{n^n}

an+1=2n+1(n+1)!(n+1)n+1a_{n+1} = \frac{2^{n+1}(n+1)!}{(n+1)^{n+1}}

an+1an=2n+1(n+1)!(n+1)n+1nn2nn!\frac{a_{n+1}}{a_n} = \frac{2^{n+1}(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{2^n n!}

=2(n+1)n!nn(n+1)n+1n!= \frac{2 \cdot (n+1) \cdot n! \cdot n^n}{(n+1)^{n+1} \cdot n!}

=2nn(n+1)n= \frac{2n^n}{(n+1)^n}

=2(nn+1)n= 2 \left(\frac{n}{n+1}\right)^n

=2(11+1/n)n= 2 \left(\frac{1}{1 + 1/n}\right)^n

L=limn2(11+1/n)nL = \lim_{n \to \infty} 2 \left(\frac{1}{1 + 1/n}\right)^n

Recall: limn(1+1n)n=e\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e

Therefore: limn(11+1/n)n=1e\lim_{n \to \infty} \left(\frac{1}{1 + 1/n}\right)^n = \frac{1}{e}

L=2e0.736L = \frac{2}{e} \approx 0.736

Since L<1L < 1, by the Ratio Test, the series converges.

5Problem 5medium

Question:

Use the Root Test to determine if n=1(n2en)n\sum_{n=1}^{\infty} \left(\frac{n^2}{e^n}\right)^n converges.

💡 Show Solution

Step 1: Compute ann\sqrt[n]{a_n}

an=(n2en)na_n = \left(\frac{n^2}{e^n}\right)^n

ann=[(n2en)n]1/n=n2en\sqrt[n]{a_n} = \left[\left(\frac{n^2}{e^n}\right)^n\right]^{1/n} = \frac{n^2}{e^n}


Step 2: Take limit

L=limnn2enL = \lim_{n \to \infty} \frac{n^2}{e^n}

This is \frac{\infty}{\infty} form. Use L'Hôpital's Rule (twice):

=limn2nen= \lim_{n \to \infty} \frac{2n}{e^n} (still \frac{\infty}{\infty})

=limn2en=0= \lim_{n \to \infty} \frac{2}{e^n} = 0


Step 3: Conclusion

Since L=0<1L = 0 < 1:

By the Root Test, the series converges absolutely.


Note: Exponentials always dominate polynomials!