Radius and Interval of Convergence

Finding where power series converge

🎯 Radius and Interval of Convergence

Review: Convergence Behavior

For power series n=0cn(xa)n\sum_{n=0}^{\infty} c_n(x-a)^n:

  • Converges at center x=ax = a (always!)
  • May converge on an interval around aa
  • Diverges outside that interval

The radius of convergence RR determines this interval.


Three Cases

Case 1: R=0R = 0

Series converges only at x=ax = a

Example: n=0n!xn\sum_{n=0}^{\infty} n! x^n

Use Ratio Test: limit is \infty unless x=0x = 0.


Case 2: 0<R<0 < R < \infty

Series converges for xa<R|x - a| < R

Diverges for xa>R|x - a| > R

Endpoints x=a±Rx = a \pm R need separate testing!


Case 3: R=R = \infty

Series converges for all xx

Example: n=0xnn!\sum_{n=0}^{\infty} \frac{x^n}{n!} (this is exe^x)


Finding Radius Using Ratio Test

Step 1: Apply Ratio Test to cn(xa)n\sum c_n(x-a)^n

L=limncn+1(xa)n+1cn(xa)nL = \lim_{n \to \infty} \left|\frac{c_{n+1}(x-a)^{n+1}}{c_n(x-a)^n}\right|

=xalimncn+1cn= |x-a| \cdot \lim_{n \to \infty} \left|\frac{c_{n+1}}{c_n}\right|


Step 2: For convergence, need L<1L < 1:

xalimncn+1cn<1|x-a| \cdot \lim_{n \to \infty} \left|\frac{c_{n+1}}{c_n}\right| < 1

xa<1limncn+1cn|x-a| < \frac{1}{\lim_{n \to \infty} \left|\frac{c_{n+1}}{c_n}\right|}


Step 3: Radius is:

R=1limncn+1cnR = \frac{1}{\lim_{n \to \infty} \left|\frac{c_{n+1}}{c_n}\right|}

(If limit is 0, then R=R = \infty; if limit is \infty, then R=0R = 0)


Example 1: Find Radius

Find the radius of convergence for n=1xnn\sum_{n=1}^{\infty} \frac{x^n}{n}.

Use Ratio Test:

cn=1n,cn+1=1n+1c_n = \frac{1}{n}, \quad c_{n+1} = \frac{1}{n+1}

limncn+1cn=limnnn+1=1\lim_{n \to \infty} \left|\frac{c_{n+1}}{c_n}\right| = \lim_{n \to \infty} \frac{n}{n+1} = 1


R=11=1R = \frac{1}{1} = 1

Radius of convergence: R=1R = 1

Series converges for x<1|x| < 1 (since center is a=0a = 0).


Finding the Interval of Convergence

Step 1: Find radius RR using Ratio Test

Step 2: The interval (before endpoints) is (aR,a+R)(a - R, a + R)

Step 3: Test endpoints x=aRx = a - R and x=a+Rx = a + R separately using:

  • Alternating Series Test
  • p-Series Test
  • Comparison Tests
  • etc.

Step 4: Write final interval using (( or [[ depending on endpoint convergence


Example 2: Find Interval

Find the interval of convergence for n=1xnn\sum_{n=1}^{\infty} \frac{x^n}{n}.

From Example 1: R=1R = 1, center a=0a = 0

Interval before endpoints: (1,1)(-1, 1)


Test x=1x = 1:

n=11nn=n=11n\sum_{n=1}^{\infty} \frac{1^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n} (harmonic series)

Diverges!


Test x=1x = -1:

n=1(1)nn\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (alternating harmonic)

By Alternating Series Test: Converges!


Interval of convergence: [1,1)[-1, 1)

(Includes 1-1, excludes 11)


Example 3: Both Endpoints Converge

Find the interval of convergence for n=1xnn2\sum_{n=1}^{\infty} \frac{x^n}{n^2}.

Step 1: Find radius

limncn+1cn=limnn2(n+1)2=1\lim_{n \to \infty} \left|\frac{c_{n+1}}{c_n}\right| = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1

R=1R = 1


Step 2: Test x=1x = 1

n=11n2\sum_{n=1}^{\infty} \frac{1}{n^2} (p-series with p=2p = 2)

Converges!


Step 3: Test x=1x = -1

n=1(1)nn2\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}

Converges absolutely (since 1n2\sum \frac{1}{n^2} converges).

Converges!


Interval of convergence: [1,1][-1, 1] (closed interval)


Example 4: Neither Endpoint Converges

Find the interval of convergence for n=0nxn\sum_{n=0}^{\infty} n x^n.

Step 1: Find radius

cn=n,cn+1=n+1c_n = n, \quad c_{n+1} = n+1

limnn+1n=1\lim_{n \to \infty} \left|\frac{n+1}{n}\right| = 1

R=1R = 1


Step 2: Test x=1x = 1

n=0n\sum_{n=0}^{\infty} n

This diverges (terms don't approach 0).

Diverges!


Step 3: Test x=1x = -1

n=0n(1)n\sum_{n=0}^{\infty} n(-1)^n

Terms don't approach 0.

Diverges!


Interval of convergence: (1,1)(-1, 1) (open interval)


Example 5: Series Centered at a0a \neq 0

Find the interval of convergence for n=1(x3)nn2n\sum_{n=1}^{\infty} \frac{(x-3)^n}{n \cdot 2^n}.

Step 1: Find radius

cn=1n2n,cn+1=1(n+1)2n+1c_n = \frac{1}{n \cdot 2^n}, \quad c_{n+1} = \frac{1}{(n+1) \cdot 2^{n+1}}

limncn+1cn=limnn2n(n+1)2n+1\lim_{n \to \infty} \left|\frac{c_{n+1}}{c_n}\right| = \lim_{n \to \infty} \frac{n \cdot 2^n}{(n+1) \cdot 2^{n+1}}

=limnn2(n+1)=12= \lim_{n \to \infty} \frac{n}{2(n+1)} = \frac{1}{2}


R=11/2=2R = \frac{1}{1/2} = 2

Center: a=3a = 3

Interval before endpoints: (32,3+2)=(1,5)(3-2, 3+2) = (1, 5)


Test x=1x = 1:

n=1(13)nn2n=n=1(2)nn2n\sum_{n=1}^{\infty} \frac{(1-3)^n}{n \cdot 2^n} = \sum_{n=1}^{\infty} \frac{(-2)^n}{n \cdot 2^n}

=n=1(1)n2nn2n=n=1(1)nn= \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 2^n}{n \cdot 2^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}

Alternating harmonic series: Converges!


Test x=5x = 5:

n=1(53)nn2n=n=12nn2n=n=11n\sum_{n=1}^{\infty} \frac{(5-3)^n}{n \cdot 2^n} = \sum_{n=1}^{\infty} \frac{2^n}{n \cdot 2^n} = \sum_{n=1}^{\infty} \frac{1}{n}

Harmonic series: Diverges!


Interval of convergence: [1,5)[1, 5)


Example 6: Infinite Radius

Find the interval of convergence for n=0xnn!\sum_{n=0}^{\infty} \frac{x^n}{n!}.

Use Ratio Test:

cn=1n!,cn+1=1(n+1)!c_n = \frac{1}{n!}, \quad c_{n+1} = \frac{1}{(n+1)!}

limncn+1cn=limnn!(n+1)!=limn1n+1=0\lim_{n \to \infty} \left|\frac{c_{n+1}}{c_n}\right| = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0


R=10=R = \frac{1}{0} = \infty

Interval of convergence: (,)(-\infty, \infty)

Series converges for all real xx!

(This is exe^x)


Summary Table

| Endpoint x=aRx = a-R | Endpoint x=a+Rx = a+R | Interval | |--------------------|--------------------|----------| | Diverges | Diverges | (aR,a+R)(a-R, a+R) | | Converges | Diverges | [aR,a+R)[a-R, a+R) | | Diverges | Converges | (aR,a+R](a-R, a+R] | | Converges | Converges | [aR,a+R][a-R, a+R] |


⚠️ Common Mistakes

Mistake 1: Forgetting to Test Endpoints

WRONG: "Radius is 1, so interval is (1,1)(-1, 1)"

RIGHT: Must test both endpoints separately! Could be (1,1)(-1,1), [1,1)[-1,1), (1,1](-1,1], or [1,1][-1,1].


Mistake 2: Wrong Endpoint Values

For cn(x3)n\sum c_n(x-3)^n with R=2R = 2:

WRONG: Endpoints are ±2\pm 2

RIGHT: Endpoints are 3±23 \pm 2, i.e., x=1x = 1 and x=5x = 5

Center is 3, not 0!


Mistake 3: Testing Wrong Series at Endpoints

At x=1x = -1 for xnn\sum \frac{x^n}{n}:

WRONG: Test xnn\sum \frac{x^n}{n} (still has xx in it!)

RIGHT: Substitute x=1x = -1: test (1)nn\sum \frac{(-1)^n}{n}


Mistake 4: Assuming Symmetry

WRONG: "If x=1x = 1 diverges, then x=1x = -1 also diverges"

RIGHT: Must test each endpoint independently!

One might converge while the other diverges.


📝 Practice Strategy

  1. Find radius RR: Use Ratio Test on coefficients
  2. Find center aa: From (xa)n(x - a)^n term
  3. Interval before endpoints: (aR,a+R)(a - R, a + R)
  4. Test left endpoint x=aRx = a - R: Substitute, use appropriate test
  5. Test right endpoint x=a+Rx = a + R: Substitute, use appropriate test
  6. Write final interval: Use correct bracket notation
  7. Special cases: R=0R = 0 (only at center), R=R = \infty (all xx)
  8. Check your work: Make sure endpoints make sense with center!

📚 Practice Problems

1Problem 1medium

Question:

Find the interval of convergence for n=1(1)n(x2)nn5n\sum_{n=1}^{\infty} \frac{(-1)^n (x-2)^n}{n \cdot 5^n}.

💡 Show Solution

Step 1: Find radius of convergence

cn=(1)nn5nc_n = \frac{(-1)^n}{n \cdot 5^n}

For ratio test, we use absolute values:

limncn+1cn=limn1(n+1)5n+11n5n\lim_{n \to \infty} \left|\frac{c_{n+1}}{c_n}\right| = \lim_{n \to \infty} \frac{\frac{1}{(n+1) \cdot 5^{n+1}}}{\frac{1}{n \cdot 5^n}}

=limnn5n(n+1)5n+1=limnn5(n+1)=15= \lim_{n \to \infty} \frac{n \cdot 5^n}{(n+1) \cdot 5^{n+1}} = \lim_{n \to \infty} \frac{n}{5(n+1)} = \frac{1}{5}

R=11/5=5R = \frac{1}{1/5} = 5


Step 2: Find interval before endpoints

Center: a=2a = 2

Interval: (25,2+5)=(3,7)(2-5, 2+5) = (-3, 7)


Step 3: Test left endpoint x=3x = -3

n=1(1)n(32)nn5n=n=1(1)n(5)nn5n\sum_{n=1}^{\infty} \frac{(-1)^n (-3-2)^n}{n \cdot 5^n} = \sum_{n=1}^{\infty} \frac{(-1)^n (-5)^n}{n \cdot 5^n}

=n=1(1)n(1)n5nn5n=n=1(1)2nn=n=11n= \sum_{n=1}^{\infty} \frac{(-1)^n \cdot (-1)^n \cdot 5^n}{n \cdot 5^n} = \sum_{n=1}^{\infty} \frac{(-1)^{2n}}{n} = \sum_{n=1}^{\infty} \frac{1}{n}

This is the harmonic series: Diverges!


Step 4: Test right endpoint x=7x = 7

n=1(1)n(72)nn5n=n=1(1)n5nn5n\sum_{n=1}^{\infty} \frac{(-1)^n (7-2)^n}{n \cdot 5^n} = \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 5^n}{n \cdot 5^n}

=n=1(1)nn= \sum_{n=1}^{\infty} \frac{(-1)^n}{n}

This is the alternating harmonic series.

By Alternating Series Test: Converges!


Answer: Interval of convergence is (3,7](-3, 7]

2Problem 2hard

Question:

Find the radius and interval of convergence for:

n=1(x3)nn2n\sum_{n=1}^{\infty} \frac{(x-3)^n}{n \cdot 2^n}

💡 Show Solution

Solution:

This is a power series centered at x=3x = 3.

Use Ratio Test with an=(x3)nn2na_n = \frac{(x-3)^n}{n \cdot 2^n}:

an+1an=(x3)n+1(n+1)2n+1n2n(x3)n\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(x-3)^{n+1}}{(n+1) \cdot 2^{n+1}} \cdot \frac{n \cdot 2^n}{(x-3)^n}\right|

=x3nn+112= |x-3| \cdot \frac{n}{n+1} \cdot \frac{1}{2}

L=limnx32nn+1=x32L = \lim_{n \to \infty} \frac{|x-3|}{2} \cdot \frac{n}{n+1} = \frac{|x-3|}{2}

Converges when L<1L < 1: x32<1\frac{|x-3|}{2} < 1, so x3<2|x-3| < 2

Radius: R=2R = 2

This gives 1<x<51 < x < 5. Check endpoints:

At x=1x = 1: (2)nn2n=(1)nn\sum \frac{(-2)^n}{n \cdot 2^n} = \sum \frac{(-1)^n}{n} (alternating harmonic, converges)

At x=5x = 5: 2nn2n=1n\sum \frac{2^n}{n \cdot 2^n} = \sum \frac{1}{n} (harmonic series, diverges)

Interval of convergence: [1,5)[1, 5)

3Problem 3easy

Question:

Find the interval of convergence for n=0(x+1)n(n+1)!\sum_{n=0}^{\infty} \frac{(x+1)^n}{(n+1)!}.

💡 Show Solution

Step 1: Find radius

cn=1(n+1)!c_n = \frac{1}{(n+1)!}

limncn+1cn=limn(n+1)!(n+2)!\lim_{n \to \infty} \left|\frac{c_{n+1}}{c_n}\right| = \lim_{n \to \infty} \frac{(n+1)!}{(n+2)!}

=limn1n+2=0= \lim_{n \to \infty} \frac{1}{n+2} = 0

R=10=R = \frac{1}{0} = \infty


Step 2: Conclusion

Since R=R = \infty, the series converges for all xx.

Interval of convergence: (,)(-\infty, \infty)


Note: No need to test endpoints when R=R = \infty!

4Problem 4hard

Question:

Find the interval of convergence for n=2xn(lnn)2\sum_{n=2}^{\infty} \frac{x^n}{(\ln n)^2}.

💡 Show Solution

Step 1: Find radius

cn=1(lnn)2c_n = \frac{1}{(\ln n)^2}

For the ratio:

limncn+1cn=limn(lnn)2(ln(n+1))2\lim_{n \to \infty} \left|\frac{c_{n+1}}{c_n}\right| = \lim_{n \to \infty} \frac{(\ln n)^2}{(\ln(n+1))^2}

As nn \to \infty: ln(n+1)lnn\ln(n+1) \approx \ln n

=limn(lnnln(n+1))2=1= \lim_{n \to \infty} \left(\frac{\ln n}{\ln(n+1)}\right)^2 = 1

R=1R = 1


Step 2: Interval before endpoints

Center: a=0a = 0

Interval: (1,1)(-1, 1)


Step 3: Test x=1x = 1

n=21(lnn)2\sum_{n=2}^{\infty} \frac{1}{(\ln n)^2}

Compare to 1n\sum \frac{1}{n} using Limit Comparison Test:

limn1(lnn)21n=limnn(lnn)2\lim_{n \to \infty} \frac{\frac{1}{(\ln n)^2}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{(\ln n)^2}

This is \frac{\infty}{\infty} form. Use L'Hôpital's (twice):

=limn12lnnn=limnn2lnn= \lim_{n \to \infty} \frac{1}{\frac{2\ln n}{n}} = \lim_{n \to \infty} \frac{n}{2\ln n}

(Still \frac{\infty}{\infty}, apply L'Hôpital's again)

=limn12/n=limnn2== \lim_{n \to \infty} \frac{1}{2/n} = \lim_{n \to \infty} \frac{n}{2} = \infty

Since limit is \infty and 1n\sum \frac{1}{n} diverges:

1(lnn)2\sum \frac{1}{(\ln n)^2} diverges!


Step 4: Test x=1x = -1

n=2(1)n(lnn)2\sum_{n=2}^{\infty} \frac{(-1)^n}{(\ln n)^2}

Check Alternating Series Test:

  • an=1(lnn)2>0a_n = \frac{1}{(\ln n)^2} > 0
  • Decreasing: as nn increases, lnn\ln n increases, so 1(lnn)2\frac{1}{(\ln n)^2} decreases ✓
  • limn1(lnn)2=0\lim_{n \to \infty} \frac{1}{(\ln n)^2} = 0

Converges!


Answer: Interval of convergence is [1,1)[-1, 1)