The Power Rule

The most fundamental differentiation rule for polynomials

The Power Rule

The Power Rule is the easiest and most-used differentiation rule. Master this, and you've mastered half of calculus!

The Rule

ddx[xn]=nxn1\frac{d}{dx}[x^n] = nx^{n-1}

In words: Bring down the exponent, then subtract 1 from the exponent.

How It Works

Step 1: Multiply by the exponent Step 2: Decrease the exponent by 1

Basic Examples

Example 1: ddx[x3]\frac{d}{dx}[x^3]

Bring down the 3, subtract 1 from exponent: =3x31=3x2= 3x^{3-1} = 3x^2

Example 2: ddx[x5]\frac{d}{dx}[x^5]

=5x51=5x4= 5x^{5-1} = 5x^4

Example 3: ddx[x10]\frac{d}{dx}[x^{10}]

=10x101=10x9= 10x^{10-1} = 10x^9

Special Cases

First power: ddx[x1]=ddx[x]\frac{d}{dx}[x^1] = \frac{d}{dx}[x]

=1x11=1x0=1= 1 \cdot x^{1-1} = 1 \cdot x^0 = 1

The derivative of x is always 1!

Constant: ddx[c]=ddx[x0]\frac{d}{dx}[c] = \frac{d}{dx}[x^0]

=0x1=0= 0 \cdot x^{-1} = 0

The derivative of any constant is 0!

Negative Exponents

The power rule works for negative exponents too!

Example: ddx[x2]\frac{d}{dx}[x^{-2}]

=2x21=2x3=2x3= -2x^{-2-1} = -2x^{-3} = -\frac{2}{x^3}

Example: ddx[1x]=ddx[x1]\frac{d}{dx}\left[\frac{1}{x}\right] = \frac{d}{dx}[x^{-1}]

=1x11=x2=1x2= -1 \cdot x^{-1-1} = -x^{-2} = -\frac{1}{x^2}

Fractional Exponents

Works for fractions too!

Example: ddx[x1/2]=ddx[x]\frac{d}{dx}[x^{1/2}] = \frac{d}{dx}[\sqrt{x}]

=12x1/21=12x1/2=12x= \frac{1}{2}x^{1/2 - 1} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}

Example: ddx[x2/3]\frac{d}{dx}[x^{2/3}]

=23x2/31=23x1/3=23x1/3= \frac{2}{3}x^{2/3 - 1} = \frac{2}{3}x^{-1/3} = \frac{2}{3x^{1/3}}

Converting Radicals and Fractions

Before using the power rule, convert to exponent form:

| Expression | Exponent Form | Derivative | |------------|---------------|------------| | x\sqrt{x} | x1/2x^{1/2} | 12x1/2\frac{1}{2}x^{-1/2} | | x3\sqrt[3]{x} | x1/3x^{1/3} | 13x2/3\frac{1}{3}x^{-2/3} | | 1x\frac{1}{x} | x1x^{-1} | x2-x^{-2} | | 1x2\frac{1}{x^2} | x2x^{-2} | 2x3-2x^{-3} |

Why It Works

The power rule comes from the limit definition:

f(x)=limh0(x+h)nxnhf'(x) = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}

Using the binomial theorem and simplifying, we get nxn1nx^{n-1}.

But thankfully, we don't need to do that every time!

Common Mistakes to Avoid

Wrong: ddx[x3]=x2\frac{d}{dx}[x^3] = x^2 (forgot to bring down the 3)

Right: ddx[x3]=3x2\frac{d}{dx}[x^3] = 3x^2

Wrong: ddx[x5]=5x5\frac{d}{dx}[x^5] = 5x^5 (forgot to subtract 1)

Right: ddx[x5]=5x4\frac{d}{dx}[x^5] = 5x^4

Wrong: ddx[3]=3\frac{d}{dx}[3] = 3 (derivative of constant ≠ the constant)

Right: ddx[3]=0\frac{d}{dx}[3] = 0

Practice Strategy

  1. Identify the exponent on x
  2. Multiply by that exponent
  3. Subtract 1 from the exponent
  4. Simplify if needed

Multiple Terms (Preview)

For polynomials, differentiate term by term:

ddx[x3+x2]=ddx[x3]+ddx[x2]=3x2+2x\frac{d}{dx}[x^3 + x^2] = \frac{d}{dx}[x^3] + \frac{d}{dx}[x^2] = 3x^2 + 2x

We'll formalize this in the next lesson!

📚 Practice Problems

1Problem 1easy

Question:

Find the derivative of each function:

a) f(x)=x7f(x) = x^7 b) g(x)=5x32x2+8x3g(x) = 5x^3 - 2x^2 + 8x - 3 c) h(x)=1x4h(x) = \frac{1}{x^4}

💡 Show Solution

Solution:

Part (a): Power rule: ddx[xn]=nxn1\frac{d}{dx}[x^n] = nx^{n-1}

f(x)=7x6f'(x) = 7x^6

Part (b): Use power rule on each term:

g(x)=5(3x2)2(2x)+8(1)0g'(x) = 5(3x^2) - 2(2x) + 8(1) - 0

g(x)=15x24x+8g'(x) = 15x^2 - 4x + 8

Part (c): Rewrite using negative exponent: h(x)=x4h(x) = x^{-4}

h(x)=4x5=4x5h'(x) = -4x^{-5} = -\frac{4}{x^5}

2Problem 2easy

Question:

Find the derivative of f(x) = x⁷

💡 Show Solution

Using the power rule:

f(x)=ddx[x7]f'(x) = \frac{d}{dx}[x^7]

Bring down the exponent (7) and subtract 1:

=7x71= 7x^{7-1}

=7x6= 7x^6

Answer: f'(x) = 7x⁶

3Problem 3easy

Question:

Find the derivative of each function:

a) f(x)=x7f(x) = x^7 b) g(x)=5x32x2+8x3g(x) = 5x^3 - 2x^2 + 8x - 3 c) h(x)=1x4h(x) = \frac{1}{x^4}

💡 Show Solution

Solution:

Part (a): Power rule: ddx[xn]=nxn1\frac{d}{dx}[x^n] = nx^{n-1}

f(x)=7x6f'(x) = 7x^6

Part (b): Use power rule on each term:

g(x)=5(3x2)2(2x)+8(1)0g'(x) = 5(3x^2) - 2(2x) + 8(1) - 0

g(x)=15x24x+8g'(x) = 15x^2 - 4x + 8

Part (c): Rewrite using negative exponent: h(x)=x4h(x) = x^{-4}

h(x)=4x5=4x5h'(x) = -4x^{-5} = -\frac{4}{x^5}

4Problem 4medium

Question:

Find the derivative of f(x)=x+3x23f(x) = \sqrt{x} + \frac{3}{\sqrt[3]{x^2}}.

💡 Show Solution

Solution:

Rewrite using fractional exponents:

f(x)=x1/2+3x2/3f(x) = x^{1/2} + 3x^{-2/3}

Apply power rule:

f(x)=12x1/2+3(23)x5/3f'(x) = \frac{1}{2}x^{-1/2} + 3 \cdot \left(-\frac{2}{3}\right)x^{-5/3}

f(x)=12x1/22x5/3f'(x) = \frac{1}{2}x^{-1/2} - 2x^{-5/3}

Rewrite with radicals:

f(x)=12x2x5/3=12x2x53f'(x) = \frac{1}{2\sqrt{x}} - \frac{2}{x^{5/3}} = \frac{1}{2\sqrt{x}} - \frac{2}{\sqrt[3]{x^5}}

5Problem 5medium

Question:

Find the derivative of f(x)=x+3x23f(x) = \sqrt{x} + \frac{3}{\sqrt[3]{x^2}}.

💡 Show Solution

Solution:

Rewrite using fractional exponents:

f(x)=x1/2+3x2/3f(x) = x^{1/2} + 3x^{-2/3}

Apply power rule:

f(x)=12x1/2+3(23)x5/3f'(x) = \frac{1}{2}x^{-1/2} + 3 \cdot \left(-\frac{2}{3}\right)x^{-5/3}

f(x)=12x1/22x5/3f'(x) = \frac{1}{2}x^{-1/2} - 2x^{-5/3}

Rewrite with radicals:

f(x)=12x2x5/3=12x2x53f'(x) = \frac{1}{2\sqrt{x}} - \frac{2}{x^{5/3}} = \frac{1}{2\sqrt{x}} - \frac{2}{\sqrt[3]{x^5}}

6Problem 6medium

Question:

Find the derivative of g(x) = 1/x⁴

💡 Show Solution

First, rewrite using negative exponents:

g(x)=1x4=x4g(x) = \frac{1}{x^4} = x^{-4}

Now apply the power rule:

g(x)=ddx[x4]g'(x) = \frac{d}{dx}[x^{-4}]

=4x41= -4x^{-4-1}

=4x5= -4x^{-5}

We can rewrite in fraction form:

=4x5= -\frac{4}{x^5}

Answer: g'(x) = -4x⁻⁵ or -4/x⁵

7Problem 7medium

Question:

Find the derivative of h(x) = ∛x

💡 Show Solution

First, convert the cube root to exponential form:

h(x)=x3=x1/3h(x) = \sqrt[3]{x} = x^{1/3}

Apply the power rule:

h(x)=ddx[x1/3]h'(x) = \frac{d}{dx}[x^{1/3}]

=13x1/31= \frac{1}{3}x^{1/3 - 1}

=13x2/3= \frac{1}{3}x^{-2/3}

We can rewrite this:

=13x2/3=13x23= \frac{1}{3x^{2/3}} = \frac{1}{3\sqrt[3]{x^2}}

Answer: h'(x) = (1/3)x⁻²/³ or 1/(3∛(x²))