Calculus with Polar Coordinates

Derivatives, tangents, and area in polar form

🎯 Calculus with Polar Coordinates

Slope of Polar Curves

For a polar curve r=f(θ)r = f(\theta), we can express it parametrically:

x=rcosθ=f(θ)cosθx = r\cos\theta = f(\theta)\cos\theta y=rsinθ=f(θ)sinθy = r\sin\theta = f(\theta)\sin\theta

Then use the parametric derivative formula!

dydx=dy/dθdx/dθ\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}


Derivatives for Polar Curves

Find dxdθ\frac{dx}{d\theta} and dydθ\frac{dy}{d\theta}:

dxdθ=ddθ(rcosθ)=drdθcosθrsinθ\frac{dx}{d\theta} = \frac{d}{d\theta}(r\cos\theta) = \frac{dr}{d\theta}\cos\theta - r\sin\theta

dydθ=ddθ(rsinθ)=drdθsinθ+rcosθ\frac{dy}{d\theta} = \frac{d}{d\theta}(r\sin\theta) = \frac{dr}{d\theta}\sin\theta + r\cos\theta


Then:

dydx=drdθsinθ+rcosθdrdθcosθrsinθ\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}

Memorize this formula or derive it each time using product rule!


Example 1: Slope of Cardioid

Find dydx\frac{dy}{dx} for r=1+cosθr = 1 + \cos\theta at θ=π2\theta = \frac{\pi}{2}.

Step 1: Find drdθ\frac{dr}{d\theta}

r=1+cosθr = 1 + \cos\theta drdθ=sinθ\frac{dr}{d\theta} = -\sin\theta


Step 2: Compute numerator and denominator

At θ=π2\theta = \frac{\pi}{2}:

  • r=1+cosπ2=1+0=1r = 1 + \cos\frac{\pi}{2} = 1 + 0 = 1
  • drdθ=sinπ2=1\frac{dr}{d\theta} = -\sin\frac{\pi}{2} = -1

Numerator: drdθsinθ+rcosθ=(1)(1)+(1)(0)=1\frac{dr}{d\theta}\sin\theta + r\cos\theta = (-1)(1) + (1)(0) = -1

Denominator: drdθcosθrsinθ=(1)(0)(1)(1)=1\frac{dr}{d\theta}\cos\theta - r\sin\theta = (-1)(0) - (1)(1) = -1


Step 3: Calculate slope

dydx=11=1\frac{dy}{dx} = \frac{-1}{-1} = 1

Answer: The slope at θ=π2\theta = \frac{\pi}{2} is 11.


Horizontal and Vertical Tangents

Horizontal Tangent

When dydθ=0\frac{dy}{d\theta} = 0 and dxdθ0\frac{dx}{d\theta} \neq 0:

drdθsinθ+rcosθ=0\frac{dr}{d\theta}\sin\theta + r\cos\theta = 0


Vertical Tangent

When dxdθ=0\frac{dx}{d\theta} = 0 and dydθ0\frac{dy}{d\theta} \neq 0:

drdθcosθrsinθ=0\frac{dr}{d\theta}\cos\theta - r\sin\theta = 0


Example 2: Tangent at the Pole

For most polar curves, when r=0r = 0 (at the origin/pole):

The tangent line has slope based on the angle θ\theta where r=0r = 0.

At the pole, the tangent is the line θ=θ0\theta = \theta_0 where r(θ0)=0r(\theta_0) = 0.


Area in Polar Coordinates

The area enclosed by r=f(θ)r = f(\theta) from θ=α\theta = \alpha to θ=β\theta = \beta:

A=12αβr2dθA = \frac{1}{2}\int_{\alpha}^{\beta} r^2\,d\theta

💡 Key Idea: Sum up infinitely many thin "pizza slices" with area 12r2Δθ\frac{1}{2}r^2\Delta\theta!


Why This Formula?

Each infinitesimal sector has:

  • Radius: rr
  • Angle: dθd\theta
  • Area: 12r2dθ\frac{1}{2}r^2\,d\theta (like area of triangle with arc)

Integrate to get total area!


Example 3: Area of Circle

Find the area enclosed by r=3r = 3 for 0θ2π0 \leq \theta \leq 2\pi.

Step 1: Set up integral

A=1202π32dθ=1202π9dθA = \frac{1}{2}\int_0^{2\pi} 3^2\,d\theta = \frac{1}{2}\int_0^{2\pi} 9\,d\theta


Step 2: Integrate

=92[θ]02π=92(2π)=9π= \frac{9}{2}[\theta]_0^{2\pi} = \frac{9}{2}(2\pi) = 9\pi

Answer: 9π9\pi (area of circle with radius 3) ✓


Example 4: Area of Cardioid

Find the area enclosed by r=1+cosθr = 1 + \cos\theta.

Step 1: Determine limits

Full cardioid: 0θ2π0 \leq \theta \leq 2\pi

By symmetry, can do 00 to π\pi and double.


Step 2: Set up integral

A=1202π(1+cosθ)2dθA = \frac{1}{2}\int_0^{2\pi} (1 + \cos\theta)^2\,d\theta


Step 3: Expand

(1+cosθ)2=1+2cosθ+cos2θ(1 + \cos\theta)^2 = 1 + 2\cos\theta + \cos^2\theta

Use identity: cos2θ=1+cos2θ2\cos^2\theta = \frac{1 + \cos 2\theta}{2}

=1+2cosθ+1+cos2θ2= 1 + 2\cos\theta + \frac{1 + \cos 2\theta}{2}

=32+2cosθ+cos2θ2= \frac{3}{2} + 2\cos\theta + \frac{\cos 2\theta}{2}


Step 4: Integrate

A=1202π(32+2cosθ+cos2θ2)dθA = \frac{1}{2}\int_0^{2\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{\cos 2\theta}{2}\right)d\theta

=12[3θ2+2sinθ+sin2θ4]02π= \frac{1}{2}\left[\frac{3\theta}{2} + 2\sin\theta + \frac{\sin 2\theta}{4}\right]_0^{2\pi}

=12[3π+0+0000]= \frac{1}{2}\left[3\pi + 0 + 0 - 0 - 0 - 0\right]

=3π2= \frac{3\pi}{2}

Answer: 3π2\frac{3\pi}{2}


Area Between Two Polar Curves

For r1=f(θ)r_1 = f(\theta) (outer) and r2=g(θ)r_2 = g(\theta) (inner) from θ=α\theta = \alpha to β\beta:

A=12αβ[r12r22]dθA = \frac{1}{2}\int_{\alpha}^{\beta} \left[r_1^2 - r_2^2\right]d\theta

Think: Big circle sector minus small circle sector!


Example 5: Area Between Curves

Find the area inside r=2r = 2 but outside r=2cosθr = 2\cos\theta.

Step 1: Find intersection points

2=2cosθ2 = 2\cos\theta cosθ=1\cos\theta = 1 θ=0\theta = 0

Wait, that's not right. Let me reconsider: when does 2cosθ22\cos\theta \leq 2?

When cosθ1\cos\theta \leq 1, which is always true.

Actually, find where r=2cosθr = 2\cos\theta intersects r=2r = 2:

Actually the circle r=2cosθr = 2\cos\theta has maximum radius 2 (when θ=0\theta = 0).

Let me set them equal: 2cosθ=22\cos\theta = 2 cosθ=1\cos\theta = 1 θ=0\theta = 0

Hmm, they're tangent. Let me reconsider the problem...

Better approach: r=2cosθr = 2\cos\theta is a circle of diameter 2 centered at (1,0)(1, 0).

The region "inside r=2r = 2 but outside r=2cosθr = 2\cos\theta" needs intersection points.

2=2cosθ    θ=02 = 2\cos\theta \implies \theta = 0

r=2cosθr = 2\cos\theta goes negative for π2<θ<3π2\frac{\pi}{2} < \theta < \frac{3\pi}{2}.


For π2θπ2-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, r=2cosθ0r = 2\cos\theta \geq 0 and 2\leq 2.

Setup: A=12π/2π/2[22(2cosθ)2]dθA = \frac{1}{2}\int_{-\pi/2}^{\pi/2} \left[2^2 - (2\cos\theta)^2\right]d\theta

=12π/2π/2(44cos2θ)dθ= \frac{1}{2}\int_{-\pi/2}^{\pi/2} (4 - 4\cos^2\theta)\,d\theta

=2π/2π/2(1cos2θ)dθ= 2\int_{-\pi/2}^{\pi/2} (1 - \cos^2\theta)\,d\theta

=2π/2π/2sin2θdθ= 2\int_{-\pi/2}^{\pi/2} \sin^2\theta\,d\theta

Using sin2θ=1cos2θ2\sin^2\theta = \frac{1 - \cos 2\theta}{2}:

=2π/2π/21cos2θ2dθ= 2\int_{-\pi/2}^{\pi/2} \frac{1 - \cos 2\theta}{2}\,d\theta

=[θsin2θ2]π/2π/2= \left[\theta - \frac{\sin 2\theta}{2}\right]_{-\pi/2}^{\pi/2}

=(π20)(π20)=π= \left(\frac{\pi}{2} - 0\right) - \left(-\frac{\pi}{2} - 0\right) = \pi

Answer: π\pi


Arc Length in Polar

Arc length from θ=α\theta = \alpha to θ=β\theta = \beta:

L=αβr2+(drdθ)2dθL = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}\,d\theta

Derivation: From parametric form x=rcosθx = r\cos\theta, y=rsinθy = r\sin\theta, use:

(dxdθ)2+(dydθ)2=r2+(drdθ)2\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = r^2 + \left(\frac{dr}{d\theta}\right)^2


Example 6: Arc Length

Find the perimeter of r=2(1+cosθ)r = 2(1 + \cos\theta) (cardioid).

Step 1: Find drdθ\frac{dr}{d\theta}

r=2(1+cosθ)r = 2(1 + \cos\theta) drdθ=2sinθ\frac{dr}{d\theta} = -2\sin\theta


Step 2: Set up integral

L=02π[2(1+cosθ)]2+(2sinθ)2dθL = \int_0^{2\pi} \sqrt{[2(1+\cos\theta)]^2 + (-2\sin\theta)^2}\,d\theta

=02π4(1+cosθ)2+4sin2θdθ= \int_0^{2\pi} \sqrt{4(1+\cos\theta)^2 + 4\sin^2\theta}\,d\theta

=202π(1+cosθ)2+sin2θdθ= 2\int_0^{2\pi} \sqrt{(1+\cos\theta)^2 + \sin^2\theta}\,d\theta


Step 3: Expand under square root

=202π1+2cosθ+cos2θ+sin2θdθ= 2\int_0^{2\pi} \sqrt{1 + 2\cos\theta + \cos^2\theta + \sin^2\theta}\,d\theta

=202π2+2cosθdθ= 2\int_0^{2\pi} \sqrt{2 + 2\cos\theta}\,d\theta

=2202π1+cosθdθ= 2\sqrt{2}\int_0^{2\pi} \sqrt{1 + \cos\theta}\,d\theta


Step 4: Use half-angle identity

1+cosθ=2cos2θ21 + \cos\theta = 2\cos^2\frac{\theta}{2}

L=2202π2cos2θ2dθL = 2\sqrt{2}\int_0^{2\pi} \sqrt{2\cos^2\frac{\theta}{2}}\,d\theta

=22202πcosθ2dθ= 2\sqrt{2} \cdot \sqrt{2}\int_0^{2\pi} \left|\cos\frac{\theta}{2}\right|d\theta

=402πcosθ2dθ= 4\int_0^{2\pi} \left|\cos\frac{\theta}{2}\right|d\theta

For 0θπ0 \leq \theta \leq \pi: cosθ20\cos\frac{\theta}{2} \geq 0

For π<θ2π\pi < \theta \leq 2\pi: cosθ2<0\cos\frac{\theta}{2} < 0 (needs absolute value)

By symmetry or direct integration:

=420πcosθ2dθ=8[2sinθ2]0π= 4 \cdot 2\int_0^{\pi} \cos\frac{\theta}{2}\,d\theta = 8\left[2\sin\frac{\theta}{2}\right]_0^{\pi}

=16[sinπ20]=16(1)=16= 16[\sin\frac{\pi}{2} - 0] = 16(1) = 16

Answer: 1616


⚠️ Common Mistakes

Mistake 1: Forgetting the 12\frac{1}{2}

WRONG: A=r2dθA = \int r^2\,d\theta

RIGHT: A=12r2dθA = \frac{1}{2}\int r^2\,d\theta

Area of sector is 12r2θ\frac{1}{2}r^2\theta!


Mistake 2: Wrong Limits

Always check: what values of θ\theta trace the desired region?

For full closed curve, often 00 to 2π2\pi, but not always!


Mistake 3: Squaring the Wrong Thing

For area between curves:

12(r12r22)dθ\frac{1}{2}\int (r_1^2 - r_2^2)\,d\theta

NOT 12(r1r2)2dθ\frac{1}{2}\int (r_1 - r_2)^2\,d\theta!


Mistake 4: Missing Intersections

When finding area between curves, find ALL intersection points to determine correct limits!

Don't forget the origin (pole) - curves can pass through at different θ\theta values.


📝 Practice Strategy

  1. For slope: Use dydx=dy/dθdx/dθ\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}, apply product rule carefully
  2. For area: Use A=12r2dθA = \frac{1}{2}\int r^2\,d\theta, don't forget the 12\frac{1}{2}!
  3. Expand squares: (a+bcosθ)2(a + b\cos\theta)^2 and use trig identities
  4. Use half-angle formulas for cos2θ\cos^2\theta or sin2θ\sin^2\theta
  5. Check symmetry to simplify integrals
  6. Draw the region - visual helps with limits
  7. For arc length: Formula is r2+(dr/dθ)2\sqrt{r^2 + (dr/d\theta)^2}

📚 Practice Problems

1Problem 1medium

Question:

Find the area of one petal of the rose r=3sin(2θ)r = 3\sin(2\theta).

💡 Show Solution

Step 1: Find when one petal is traced

r=3sin(2θ)=0r = 3\sin(2\theta) = 0 when 2θ=0,π,2π,2\theta = 0, \pi, 2\pi, \ldots

So θ=0,π2,π,\theta = 0, \frac{\pi}{2}, \pi, \ldots

One petal: 0θπ20 \leq \theta \leq \frac{\pi}{2}


Step 2: Set up area integral

A=120π/2[3sin(2θ)]2dθA = \frac{1}{2}\int_0^{\pi/2} [3\sin(2\theta)]^2\,d\theta

=120π/29sin2(2θ)dθ= \frac{1}{2}\int_0^{\pi/2} 9\sin^2(2\theta)\,d\theta

=920π/2sin2(2θ)dθ= \frac{9}{2}\int_0^{\pi/2} \sin^2(2\theta)\,d\theta


Step 3: Use identity sin2u=1cos2u2\sin^2 u = \frac{1 - \cos 2u}{2}

With u=2θu = 2\theta:

sin2(2θ)=1cos(4θ)2\sin^2(2\theta) = \frac{1 - \cos(4\theta)}{2}

A=920π/21cos(4θ)2dθA = \frac{9}{2}\int_0^{\pi/2} \frac{1 - \cos(4\theta)}{2}\,d\theta

=940π/2(1cos(4θ))dθ= \frac{9}{4}\int_0^{\pi/2} (1 - \cos(4\theta))\,d\theta


Step 4: Integrate

=94[θsin(4θ)4]0π/2= \frac{9}{4}\left[\theta - \frac{\sin(4\theta)}{4}\right]_0^{\pi/2}

=94[(π2sin(2π)4)(00)]= \frac{9}{4}\left[\left(\frac{\pi}{2} - \frac{\sin(2\pi)}{4}\right) - (0 - 0)\right]

=94π2=9π8= \frac{9}{4} \cdot \frac{\pi}{2} = \frac{9\pi}{8}

Answer: 9π8\frac{9\pi}{8}

2Problem 2hard

Question:

Find the area enclosed by one loop of the rose curve r=3sin(2θ)r = 3\sin(2\theta).

💡 Show Solution

Solution:

Step 1: Find when one loop is traced.

One loop occurs when rr goes from 0 back to 0:

3sin(2θ)=03\sin(2\theta) = 0

2θ=0,π,2π,...2\theta = 0, \pi, 2\pi, ...

θ=0,π2,π,...\theta = 0, \frac{\pi}{2}, \pi, ...

First loop: θ=0\theta = 0 to θ=π2\theta = \frac{\pi}{2}

Step 2: Apply area formula for polar curves.

A=12abr2dθA = \frac{1}{2}\int_a^b r^2 \, d\theta

A=120π/2[3sin(2θ)]2dθA = \frac{1}{2}\int_0^{\pi/2} [3\sin(2\theta)]^2 \, d\theta

=120π/29sin2(2θ)dθ= \frac{1}{2}\int_0^{\pi/2} 9\sin^2(2\theta) \, d\theta

=920π/2sin2(2θ)dθ= \frac{9}{2}\int_0^{\pi/2} \sin^2(2\theta) \, d\theta

Use identity: sin2u=1cos(2u)2\sin^2 u = \frac{1 - \cos(2u)}{2}

=920π/21cos(4θ)2dθ= \frac{9}{2}\int_0^{\pi/2} \frac{1 - \cos(4\theta)}{2} \, d\theta

=940π/2[1cos(4θ)]dθ= \frac{9}{4}\int_0^{\pi/2} [1 - \cos(4\theta)] \, d\theta

=94[θsin(4θ)4]0π/2= \frac{9}{4}\left[\theta - \frac{\sin(4\theta)}{4}\right]_0^{\pi/2}

=94[π2sin(2π)40+0]= \frac{9}{4}\left[\frac{\pi}{2} - \frac{\sin(2\pi)}{4} - 0 + 0\right]

=94π2=9π8= \frac{9}{4} \cdot \frac{\pi}{2} = \frac{9\pi}{8} square units

3Problem 3hard

Question:

Find dydx\frac{dy}{dx} for r=θr = \theta at θ=π4\theta = \frac{\pi}{4}.

💡 Show Solution

Step 1: Find drdθ\frac{dr}{d\theta}

r=θr = \theta drdθ=1\frac{dr}{d\theta} = 1


Step 2: Compute derivatives

dxdθ=drdθcosθrsinθ=cosθθsinθ\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta = \cos\theta - \theta\sin\theta

dydθ=drdθsinθ+rcosθ=sinθ+θcosθ\frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta = \sin\theta + \theta\cos\theta


Step 3: Evaluate at θ=π4\theta = \frac{\pi}{4}

dxdθπ/4=cosπ4π4sinπ4\frac{dx}{d\theta}\bigg|_{\pi/4} = \cos\frac{\pi}{4} - \frac{\pi}{4}\sin\frac{\pi}{4}

=22π422=22(1π4)= \frac{\sqrt{2}}{2} - \frac{\pi}{4} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}\left(1 - \frac{\pi}{4}\right)

dydθπ/4=sinπ4+π4cosπ4\frac{dy}{d\theta}\bigg|_{\pi/4} = \sin\frac{\pi}{4} + \frac{\pi}{4}\cos\frac{\pi}{4}

=22+π422=22(1+π4)= \frac{\sqrt{2}}{2} + \frac{\pi}{4} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}\left(1 + \frac{\pi}{4}\right)


Step 4: Calculate slope

dydx=22(1+π4)22(1π4)=1+π41π4\frac{dy}{dx} = \frac{\frac{\sqrt{2}}{2}(1 + \frac{\pi}{4})}{\frac{\sqrt{2}}{2}(1 - \frac{\pi}{4})} = \frac{1 + \frac{\pi}{4}}{1 - \frac{\pi}{4}}

=4+π4π= \frac{4 + \pi}{4 - \pi}

Answer: 4+π4π\frac{4 + \pi}{4 - \pi}

4Problem 4expert

Question:

Find the area inside both r=sinθr = \sin\theta and r=cosθr = \cos\theta.

💡 Show Solution

Step 1: Find intersection points

Set equal: sinθ=cosθ\sin\theta = \cos\theta tanθ=1\tan\theta = 1 θ=π4\theta = \frac{\pi}{4} (in first quadrant)


Step 2: Visualize

r=sinθr = \sin\theta: circle with diameter on positive y-axis

r=cosθr = \cos\theta: circle with diameter on positive x-axis

Both pass through origin and intersect at θ=π4\theta = \frac{\pi}{4}.


Step 3: Determine which is outer

For 0θπ40 \leq \theta \leq \frac{\pi}{4}: cosθsinθ\cos\theta \geq \sin\theta, so r=cosθr = \cos\theta is outer.

For π4θπ2\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}: sinθcosθ\sin\theta \geq \cos\theta, so r=sinθr = \sin\theta is outer.


Step 4: By symmetry, use one piece and double

A=2120π/4cos2θdθA = 2 \cdot \frac{1}{2}\int_0^{\pi/4} \cos^2\theta\,d\theta

=0π/4cos2θdθ= \int_0^{\pi/4} \cos^2\theta\,d\theta


Step 5: Use identity cos2θ=1+cos2θ2\cos^2\theta = \frac{1 + \cos 2\theta}{2}

=0π/41+cos2θ2dθ= \int_0^{\pi/4} \frac{1 + \cos 2\theta}{2}\,d\theta

=12[θ+sin2θ2]0π/4= \frac{1}{2}\left[\theta + \frac{\sin 2\theta}{2}\right]_0^{\pi/4}

=12[π4+sin(π/2)20]= \frac{1}{2}\left[\frac{\pi}{4} + \frac{\sin(\pi/2)}{2} - 0\right]

=12[π4+12]= \frac{1}{2}\left[\frac{\pi}{4} + \frac{1}{2}\right]

=π8+14= \frac{\pi}{8} + \frac{1}{4}

Answer: π8+14\frac{\pi}{8} + \frac{1}{4} or π+28\frac{\pi + 2}{8}