Simple Harmonic Motion

Differential equation approach to SHM, springs, and pendulums

Simple Harmonic Motion

Differential Equation

For restoring force F=kxF = -kx:

md2xdt2=kxm\frac{d^2x}{dt^2} = -kx

d2xdt2+ω02x=0\frac{d^2x}{dt^2} + \omega_0^2x = 0

where ω0=k/m\omega_0 = \sqrt{k/m} is natural angular frequency.

General Solution

x(t)=Acos(ω0t+ϕ)x(t) = A\cos(\omega_0 t + \phi)

or equivalently:

x(t)=C1cos(ω0t)+C2sin(ω0t)x(t) = C_1\cos(\omega_0 t) + C_2\sin(\omega_0 t)

where AA is amplitude and ϕ\phi is phase constant.

Velocity and Acceleration

v(t)=dxdt=Aω0sin(ω0t+ϕ)v(t) = \frac{dx}{dt} = -A\omega_0\sin(\omega_0 t + \phi)

a(t)=dvdt=Aω02cos(ω0t+ϕ)=ω02xa(t) = \frac{dv}{dt} = -A\omega_0^2\cos(\omega_0 t + \phi) = -\omega_0^2 x

Maximum velocity: vmax=Aω0v_{max} = A\omega_0

Maximum acceleration: amax=Aω02a_{max} = A\omega_0^2

Energy in SHM

Kinetic energy: KE=12mv2=12mA2ω02sin2(ω0t+ϕ)KE = \frac{1}{2}mv^2 = \frac{1}{2}mA^2\omega_0^2\sin^2(\omega_0 t + \phi)

Potential energy: PE=12kx2=12kA2cos2(ω0t+ϕ)PE = \frac{1}{2}kx^2 = \frac{1}{2}kA^2\cos^2(\omega_0 t + \phi)

Total energy: E=KE+PE=12kA2=constantE = KE + PE = \frac{1}{2}kA^2 = \text{constant}

(Using k=mω02k = m\omega_0^2)

Initial Conditions

Given x0=x(0)x_0 = x(0) and v0=v(0)v_0 = v(0):

A=x02+v02ω02A = \sqrt{x_0^2 + \frac{v_0^2}{\omega_0^2}}

tanϕ=v0ω0x0\tan\phi = -\frac{v_0}{\omega_0 x_0}

Period and Frequency

Period: T=2πω0=2πmkT = \frac{2\pi}{\omega_0} = 2\pi\sqrt{\frac{m}{k}}

Frequency: f=1T=ω02π=12πkmf = \frac{1}{T} = \frac{\omega_0}{2\pi} = \frac{1}{2\pi}\sqrt{\frac{k}{m}}

Simple Pendulum

For small angles (sinθθ\sin\theta \approx \theta):

d2θdt2+gLθ=0\frac{d^2\theta}{dt^2} + \frac{g}{L}\theta = 0

ω0=gL\omega_0 = \sqrt{\frac{g}{L}}

T=2πLgT = 2\pi\sqrt{\frac{L}{g}}

Physical Pendulum

Extended object rotating about pivot:

Torque: τ=mgdsinθmgdθ\tau = -mgd\sin\theta \approx -mgd\theta

where dd is distance from pivot to center of mass.

Id2θdt2=mgdθI\frac{d^2\theta}{dt^2} = -mgd\theta

ω0=mgdI\omega_0 = \sqrt{\frac{mgd}{I}}

T=2πImgdT = 2\pi\sqrt{\frac{I}{mgd}}

Torsional Pendulum

Restoring torque: τ=κθ\tau = -\kappa\theta

where κ\kappa is torsional constant.

Id2θdt2=κθI\frac{d^2\theta}{dt^2} = -\kappa\theta

ω0=κI\omega_0 = \sqrt{\frac{\kappa}{I}}

Two-Body Oscillator

Two masses m1m_1 and m2m_2 connected by spring with constant kk:

Reduced mass: μ=m1m2m1+m2\mu = \frac{m_1m_2}{m_1 + m_2}

ω0=kμ\omega_0 = \sqrt{\frac{k}{\mu}}

System oscillates as if single mass μ\mu attached to spring kk.

Vertical Spring

Mass hanging from spring:

Equilibrium: kxeq=mgkx_{eq} = mg

Displacement from equilibrium: y=xxeqy = x - x_{eq}

md2ydt2=kym\frac{d^2y}{dt^2} = -ky

Same SHM equation! Period independent of gravity:

T=2πmkT = 2\pi\sqrt{\frac{m}{k}}

📚 Practice Problems

1Problem 1medium

Question:

A 0.5 kg mass attached to a spring (k = 200 N/m) oscillates with amplitude A = 0.1 m. Find: (a) the angular frequency and period, (b) the maximum velocity and acceleration, and (c) the velocity when x = 0.05 m.

💡 Show Solution

Given:

  • m = 0.5 kg
  • k = 200 N/m
  • A = 0.1 m

(a) Angular frequency and period:

ω=km=2000.5=400\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{200}{0.5}} = \sqrt{400}

ω=20 rad/s\boxed{\omega = 20 \text{ rad/s}}

T=2πω=2π20T = \frac{2\pi}{\omega} = \frac{2\pi}{20}

T=0.314 s\boxed{T = 0.314 \text{ s}}

(b) Maximum velocity and acceleration:

vmax=ωA=(20)(0.1)v_{max} = \omega A = (20)(0.1)

vmax=2.0 m/s\boxed{v_{max} = 2.0 \text{ m/s}}

(Occurs at x = 0)

amax=ω2A=(20)2(0.1)=400(0.1)a_{max} = \omega^2 A = (20)^2(0.1) = 400(0.1)

amax=40 m/s2\boxed{a_{max} = 40 \text{ m/s}^2}

(Occurs at x = ±A)

(c) Velocity at x = 0.05 m:

Energy method: 12kA2=12kx2+12mv2\frac{1}{2}kA^2 = \frac{1}{2}kx^2 + \frac{1}{2}mv^2

kA2=kx2+mv2kA^2 = kx^2 + mv^2

v2=km(A2x2)=ω2(A2x2)v^2 = \frac{k}{m}(A^2 - x^2) = \omega^2(A^2 - x^2)

v2=(20)2[(0.1)2(0.05)2]=400[0.010.0025]v^2 = (20)^2[(0.1)^2 - (0.05)^2] = 400[0.01 - 0.0025]

v2=400(0.0075)=3.0v^2 = 400(0.0075) = 3.0

v=1.73 m/s\boxed{v = 1.73 \text{ m/s}}

2Problem 2hard

Question:

A physical pendulum consists of a uniform rod (length L = 1.0 m, mass M = 2.0 kg) pivoted at one end. Find: (a) the period of small oscillations, (b) the angular frequency, and (c) compare to a simple pendulum of the same length.

💡 Show Solution

Given:

  • L = 1.0 m
  • M = 2.0 kg
  • Rod pivoted at end

(a) Period:

For physical pendulum: T=2πImgdT = 2\pi\sqrt{\frac{I}{mgd}}

where:

  • I = 13ML2\frac{1}{3}ML^2 = moment about pivot
  • d = L/2 = distance to CM

T=2πML2/3Mg(L/2)=2π2L3gT = 2\pi\sqrt{\frac{ML^2/3}{Mg(L/2)}} = 2\pi\sqrt{\frac{2L}{3g}}

T=2π2(1.0)3(9.8)=2π229.4T = 2\pi\sqrt{\frac{2(1.0)}{3(9.8)}} = 2\pi\sqrt{\frac{2}{29.4}}

T=2π0.0680=2π(0.261)T = 2\pi\sqrt{0.0680} = 2\pi(0.261)

T=1.64 s\boxed{T = 1.64 \text{ s}}

(b) Angular frequency:

ω=2πT=2π1.64\omega = \frac{2\pi}{T} = \frac{2\pi}{1.64}

ω=3.83 rad/s\boxed{\omega = 3.83 \text{ rad/s}}

(c) Comparison to simple pendulum:

Simple pendulum with length L: Tsimple=2πLg=2π1.09.8T_{simple} = 2\pi\sqrt{\frac{L}{g}} = 2\pi\sqrt{\frac{1.0}{9.8}}

Tsimple=2.01 sT_{simple} = 2.01 \text{ s}

TrodTsimple=1.642.01=0.816\frac{T_{rod}}{T_{simple}} = \frac{1.64}{2.01} = 0.816

Rod oscillates 23% faster\boxed{\text{Rod oscillates } 23\% \text{ faster}}

Reason: Rod's effective length is Leff=2L3=0.67L_{eff} = \frac{2L}{3} = 0.67 m

3Problem 3medium

Question:

Derive the differential equation for a mass-spring system and solve it for initial conditions: at t = 0, x = 0.08 m and v = 0 (given: m = 2.0 kg, k = 50 N/m). Find the equation of motion x(t).

💡 Show Solution

Given:

  • m = 2.0 kg
  • k = 50 N/m
  • At t = 0: x₀ = 0.08 m, v₀ = 0

Differential equation:

Newton's second law: F=maF = ma kx=md2xdt2-kx = m\frac{d^2x}{dt^2}

d2xdt2+kmx=0\boxed{\frac{d^2x}{dt^2} + \frac{k}{m}x = 0}

Or: d2xdt2+ω2x=0\frac{d^2x}{dt^2} + \omega^2 x = 0 where ω=k/m\omega = \sqrt{k/m}

General solution:

x(t)=Acos(ωt+ϕ)x(t) = A\cos(\omega t + \phi)

Find constants:

ω=km=502.0=25=5 rad/s\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{50}{2.0}} = \sqrt{25} = 5 \text{ rad/s}

At t = 0: x(0)=Acos(ϕ)=0.08x(0) = A\cos(\phi) = 0.08

v(0)=Aωsin(ϕ)=0v(0) = -A\omega\sin(\phi) = 0

From v(0) = 0: sin(ϕ)=0\sin(\phi) = 0ϕ=0\phi = 0 or π\pi

Since x(0) > 0 and cos(0)=1\cos(0) = 1: choose ϕ=0\phi = 0

A=0.08 mA = 0.08 \text{ m}

Final answer:

x(t)=0.08cos(5t) m\boxed{x(t) = 0.08\cos(5t) \text{ m}}

where t is in seconds.

Velocity: v(t)=0.4sin(5t) m/sv(t) = -0.4\sin(5t) \text{ m/s}

Acceleration: a(t)=2.0cos(5t) m/s2a(t) = -2.0\cos(5t) \text{ m/s}^2