Simple Harmonic Motion

Differential equation approach to SHM, springs, and pendulums

Simple Harmonic Motion

Differential Equation

For restoring force F=โˆ’kxF = -kx:

md2xdt2=โˆ’kxm\frac{d^2x}{dt^2} = -kx

d2xdt2+ฯ‰02x=0\frac{d^2x}{dt^2} + \omega_0^2x = 0

where ฯ‰0=k/m\omega_0 = \sqrt{k/m} is natural angular frequency.

General Solution

x(t)=Acosโก(ฯ‰0t+ฯ•)x(t) = A\cos(\omega_0 t + \phi)

or equivalently:

x(t)=C1cosโก(ฯ‰0t)+C2sinโก(ฯ‰0t)x(t) = C_1\cos(\omega_0 t) + C_2\sin(\omega_0 t)

where AA is amplitude and ฯ•\phi is phase constant.

Velocity and Acceleration

v(t)=dxdt=โˆ’Aฯ‰0sinโก(ฯ‰0t+ฯ•)v(t) = \frac{dx}{dt} = -A\omega_0\sin(\omega_0 t + \phi)

a(t)=dvdt=โˆ’Aฯ‰02cosโก(ฯ‰0t+ฯ•)=โˆ’ฯ‰02xa(t) = \frac{dv}{dt} = -A\omega_0^2\cos(\omega_0 t + \phi) = -\omega_0^2 x

Maximum velocity: vmax=Aฯ‰0v_{max} = A\omega_0

Maximum acceleration: amax=Aฯ‰02a_{max} = A\omega_0^2

Energy in SHM

Kinetic energy: KE=12mv2=12mA2ฯ‰02sinโก2(ฯ‰0t+ฯ•)KE = \frac{1}{2}mv^2 = \frac{1}{2}mA^2\omega_0^2\sin^2(\omega_0 t + \phi)

Potential energy: PE=12kx2=12kA2cosโก2(ฯ‰0t+ฯ•)PE = \frac{1}{2}kx^2 = \frac{1}{2}kA^2\cos^2(\omega_0 t + \phi)

Total energy: E=KE+PE=12kA2=constantE = KE + PE = \frac{1}{2}kA^2 = \text{constant}

(Using k=mฯ‰02k = m\omega_0^2)

Initial Conditions

Given x0=x(0)x_0 = x(0) and v0=v(0)v_0 = v(0):

A=x02+v02ฯ‰02A = \sqrt{x_0^2 + \frac{v_0^2}{\omega_0^2}}

tanโกฯ•=โˆ’v0ฯ‰0x0\tan\phi = -\frac{v_0}{\omega_0 x_0}

Period and Frequency

Period: T=2ฯ€ฯ‰0=2ฯ€mkT = \frac{2\pi}{\omega_0} = 2\pi\sqrt{\frac{m}{k}}

Frequency: f=1T=ฯ‰02ฯ€=12ฯ€kmf = \frac{1}{T} = \frac{\omega_0}{2\pi} = \frac{1}{2\pi}\sqrt{\frac{k}{m}}

Simple Pendulum

For small angles (sinโกฮธโ‰ˆฮธ\sin\theta \approx \theta):

d2ฮธdt2+gLฮธ=0\frac{d^2\theta}{dt^2} + \frac{g}{L}\theta = 0

ฯ‰0=gL\omega_0 = \sqrt{\frac{g}{L}}

T=2ฯ€LgT = 2\pi\sqrt{\frac{L}{g}}

Physical Pendulum

Extended object rotating about pivot:

Torque: ฯ„=โˆ’mgdsinโกฮธโ‰ˆโˆ’mgdฮธ\tau = -mgd\sin\theta \approx -mgd\theta

where dd is distance from pivot to center of mass.

Id2ฮธdt2=โˆ’mgdฮธI\frac{d^2\theta}{dt^2} = -mgd\theta

ฯ‰0=mgdI\omega_0 = \sqrt{\frac{mgd}{I}}

T=2ฯ€ImgdT = 2\pi\sqrt{\frac{I}{mgd}}

Torsional Pendulum

Restoring torque: ฯ„=โˆ’ฮบฮธ\tau = -\kappa\theta

where ฮบ\kappa is torsional constant.

Id2ฮธdt2=โˆ’ฮบฮธI\frac{d^2\theta}{dt^2} = -\kappa\theta

ฯ‰0=ฮบI\omega_0 = \sqrt{\frac{\kappa}{I}}

Two-Body Oscillator

Two masses m1m_1 and m2m_2 connected by spring with constant kk:

Reduced mass: ฮผ=m1m2m1+m2\mu = \frac{m_1m_2}{m_1 + m_2}

ฯ‰0=kฮผ\omega_0 = \sqrt{\frac{k}{\mu}}

System oscillates as if single mass ฮผ\mu attached to spring kk.

Vertical Spring

Mass hanging from spring:

Equilibrium: kxeq=mgkx_{eq} = mg

Displacement from equilibrium: y=xโˆ’xeqy = x - x_{eq}

md2ydt2=โˆ’kym\frac{d^2y}{dt^2} = -ky

Same SHM equation! Period independent of gravity:

T=2ฯ€mkT = 2\pi\sqrt{\frac{m}{k}}

๐Ÿ“š Practice Problems

1Problem 1medium

โ“ Question:

A 0.5 kg mass attached to a spring (k = 200 N/m) oscillates with amplitude A = 0.1 m. Find: (a) the angular frequency and period, (b) the maximum velocity and acceleration, and (c) the velocity when x = 0.05 m.

๐Ÿ’ก Show Solution

Given:

  • m = 0.5 kg
  • k = 200 N/m
  • A = 0.1 m

(a) Angular frequency and period:

ฯ‰=km=2000.5=400\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{200}{0.5}} = \sqrt{400}

ฯ‰=20ย rad/s\boxed{\omega = 20 \text{ rad/s}}

T=2ฯ€ฯ‰=2ฯ€20T = \frac{2\pi}{\omega} = \frac{2\pi}{20}

T=0.314ย s\boxed{T = 0.314 \text{ s}}

(b) Maximum velocity and acceleration:

vmax=ฯ‰A=(20)(0.1)v_{max} = \omega A = (20)(0.1)

vmax=2.0ย m/s\boxed{v_{max} = 2.0 \text{ m/s}}

(Occurs at x = 0)

amax=ฯ‰2A=(20)2(0.1)=400(0.1)a_{max} = \omega^2 A = (20)^2(0.1) = 400(0.1)

amax=40ย m/s2\boxed{a_{max} = 40 \text{ m/s}^2}

(Occurs at x = ยฑA)

(c) Velocity at x = 0.05 m:

Energy method: 12kA2=12kx2+12mv2\frac{1}{2}kA^2 = \frac{1}{2}kx^2 + \frac{1}{2}mv^2

kA2=kx2+mv2kA^2 = kx^2 + mv^2

v2=km(A2โˆ’x2)=ฯ‰2(A2โˆ’x2)v^2 = \frac{k}{m}(A^2 - x^2) = \omega^2(A^2 - x^2)

v2=(20)2[(0.1)2โˆ’(0.05)2]=400[0.01โˆ’0.0025]v^2 = (20)^2[(0.1)^2 - (0.05)^2] = 400[0.01 - 0.0025]

v2=400(0.0075)=3.0v^2 = 400(0.0075) = 3.0

v=1.73ย m/s\boxed{v = 1.73 \text{ m/s}}

2Problem 2hard

โ“ Question:

A physical pendulum consists of a uniform rod (length L = 1.0 m, mass M = 2.0 kg) pivoted at one end. Find: (a) the period of small oscillations, (b) the angular frequency, and (c) compare to a simple pendulum of the same length.

๐Ÿ’ก Show Solution

Given:

  • L = 1.0 m
  • M = 2.0 kg
  • Rod pivoted at end

(a) Period:

For physical pendulum: T=2ฯ€ImgdT = 2\pi\sqrt{\frac{I}{mgd}}

where:

  • I = 13ML2\frac{1}{3}ML^2 = moment about pivot
  • d = L/2 = distance to CM

T=2ฯ€ML2/3Mg(L/2)=2ฯ€2L3gT = 2\pi\sqrt{\frac{ML^2/3}{Mg(L/2)}} = 2\pi\sqrt{\frac{2L}{3g}}

T=2ฯ€2(1.0)3(9.8)=2ฯ€229.4T = 2\pi\sqrt{\frac{2(1.0)}{3(9.8)}} = 2\pi\sqrt{\frac{2}{29.4}}

T=2ฯ€0.0680=2ฯ€(0.261)T = 2\pi\sqrt{0.0680} = 2\pi(0.261)

T=1.64ย s\boxed{T = 1.64 \text{ s}}

(b) Angular frequency:

ฯ‰=2ฯ€T=2ฯ€1.64\omega = \frac{2\pi}{T} = \frac{2\pi}{1.64}

ฯ‰=3.83ย rad/s\boxed{\omega = 3.83 \text{ rad/s}}

(c) Comparison to simple pendulum:

Simple pendulum with length L: Tsimple=2ฯ€Lg=2ฯ€1.09.8T_{simple} = 2\pi\sqrt{\frac{L}{g}} = 2\pi\sqrt{\frac{1.0}{9.8}}

Tsimple=2.01ย sT_{simple} = 2.01 \text{ s}

TrodTsimple=1.642.01=0.816\frac{T_{rod}}{T_{simple}} = \frac{1.64}{2.01} = 0.816

Rodย oscillatesย 23%ย faster\boxed{\text{Rod oscillates } 23\% \text{ faster}}

Reason: Rod's effective length is Leff=2L3=0.67L_{eff} = \frac{2L}{3} = 0.67 m

3Problem 3medium

โ“ Question:

Derive the differential equation for a mass-spring system and solve it for initial conditions: at t = 0, x = 0.08 m and v = 0 (given: m = 2.0 kg, k = 50 N/m). Find the equation of motion x(t).

๐Ÿ’ก Show Solution

Given:

  • m = 2.0 kg
  • k = 50 N/m
  • At t = 0: xโ‚€ = 0.08 m, vโ‚€ = 0

Differential equation:

Newton's second law: F=maF = ma โˆ’kx=md2xdt2-kx = m\frac{d^2x}{dt^2}

d2xdt2+kmx=0\boxed{\frac{d^2x}{dt^2} + \frac{k}{m}x = 0}

Or: d2xdt2+ฯ‰2x=0\frac{d^2x}{dt^2} + \omega^2 x = 0 where ฯ‰=k/m\omega = \sqrt{k/m}

General solution:

x(t)=Acosโก(ฯ‰t+ฯ•)x(t) = A\cos(\omega t + \phi)

Find constants:

ฯ‰=km=502.0=25=5ย rad/s\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{50}{2.0}} = \sqrt{25} = 5 \text{ rad/s}

At t = 0: x(0)=Acosโก(ฯ•)=0.08x(0) = A\cos(\phi) = 0.08

v(0)=โˆ’Aฯ‰sinโก(ฯ•)=0v(0) = -A\omega\sin(\phi) = 0

From v(0) = 0: sinโก(ฯ•)=0\sin(\phi) = 0 โ†’ ฯ•=0\phi = 0 or ฯ€\pi

Since x(0) > 0 and cosโก(0)=1\cos(0) = 1: choose ฯ•=0\phi = 0

A=0.08ย mA = 0.08 \text{ m}

Final answer:

x(t)=0.08cosโก(5t)ย m\boxed{x(t) = 0.08\cos(5t) \text{ m}}

where t is in seconds.

Velocity: v(t)=โˆ’0.4sinโก(5t)ย m/sv(t) = -0.4\sin(5t) \text{ m/s}

Acceleration: a(t)=โˆ’2.0cosโก(5t)ย m/s2a(t) = -2.0\cos(5t) \text{ m/s}^2