Photons and Atomic Physics

Photoelectric effect, photons, atomic models, energy levels, nuclear physics

⚛️ Photons and Atomic Physics

Wave-Particle Duality

Light exhibits both wave and particle properties!

Wave properties:

  • Interference
  • Diffraction
  • Polarization

Particle properties:

  • Photoelectric effect
  • Compton scattering
  • Discrete energy packets

💡 Quantum mechanics: Nature is fundamentally probabilistic, not deterministic!


Photons

Photon = particle of light (quantum of electromagnetic energy)

Energy of photon: E=hf=hcλE = hf = \frac{hc}{\lambda}

where:

  • h = Planck's constant = 6.626×10346.626 \times 10^{-34} J·s
  • f = frequency (Hz)
  • c = speed of light
  • λ = wavelength

Higher frequency → higher energy

  • Gamma rays: Very high E
  • Radio waves: Very low E

Photoelectric Effect

Light shining on metal can eject electrons!

Key Observations:

  1. Threshold frequency f0f_0: Below this, NO electrons (even intense light!)
  2. Instantaneous: Electrons ejected immediately
  3. KE depends on f, not intensity
  4. Intensity affects number of electrons, not their energy

Cannot be explained by classical wave theory!


Einstein's Photoelectric Equation

KEmax=hfϕKE_{max} = hf - \phi

where:

  • KEmaxKE_{max} = maximum kinetic energy of ejected electron
  • hfhf = photon energy
  • ϕ\phi = work function (minimum energy to eject electron)

At threshold: hf0=ϕhf_0 = \phi (just enough to eject, KE = 0)

Stopping potential VsV_s: eVs=KEmaxeV_s = KE_{max}

Voltage needed to stop most energetic electrons.

💡 Won Nobel Prize 1921! Not for relativity, but photoelectric effect.


De Broglie Wavelength

Particles can behave like waves!

λ=hp=hmv\lambda = \frac{h}{p} = \frac{h}{mv}

Matter waves confirmed by electron diffraction experiments!

Larger mass → smaller wavelength

  • Electron: λ ~ nm (measurable!)
  • Baseball: λ ~ 10⁻³⁴ m (unmeasurable)

Atomic Models

Rutherford Model (1911):

  • Nucleus: tiny, massive, positive
  • Electrons orbit (like planets)
  • Problem: Accelerating charges radiate → atom should collapse!

Bohr Model (1913):

  • Electrons in discrete energy levels (orbits)
  • Only certain radii allowed: rn=n2a0r_n = n^2 a_0 where a0=0.529a_0 = 0.529 Å
  • Quantized angular momentum: L=nL = n\hbar where =h/2π\hbar = h/2\pi

Energy levels (hydrogen): En=13.6 eVn2E_n = -\frac{13.6 \text{ eV}}{n^2}

where n = 1, 2, 3, ... (principal quantum number)

  • n = 1: Ground state, E = -13.6 eV
  • n = ∞: Ionization, E = 0

Negative energy means bound (need energy to remove electron).


Atomic Transitions

Electron jumps between levels → photon absorbed or emitted!

Energy of photon: Ephoton=EfEi=hfE_{photon} = |E_f - E_i| = hf

Emission (high → low): Photon out Absorption (low → high): Photon in

Emission spectrum: Discrete lines (fingerprint of element!)

Hydrogen Series:

  • Lyman (UV): n → 1
  • Balmer (visible): n → 2
  • Paschen (IR): n → 3

Heisenberg Uncertainty Principle

Cannot know position and momentum simultaneously with perfect precision!

ΔxΔp2\Delta x \Delta p \geq \frac{\hbar}{2}

Also for energy and time: ΔEΔt2\Delta E \Delta t \geq \frac{\hbar}{2}

Not limitation of measurement, but fundamental nature of reality!

💡 Key: More certain about position → less certain about momentum


Nuclear Physics

Nucleus Composition:

  • Protons: Z (atomic number), charge +e
  • Neutrons: N, charge 0
  • Mass number: A = Z + N

Isotopes: Same Z, different N (different A)

Example: 12C^{12}\text{C} vs 14C^{14}\text{C}


Mass-Energy Equivalence

Einstein's most famous equation:

E=mc2E = mc^2

Mass and energy are interchangeable!

Atomic mass unit: 1 u = 1.66×10271.66 \times 10^{-27} kg = 931.5 MeV/c²

Binding energy: Mass of separated nucleons > mass of nucleus Δm=(mass of parts)(mass of whole)\Delta m = \text{(mass of parts)} - \text{(mass of whole)} BE=Δmc2BE = \Delta m c^2

More binding energy → more stable


Nuclear Reactions

Fission:

  • Heavy nucleus splits → lighter nuclei
  • Releases energy (BE/nucleon increases)
  • Used in nuclear power plants
  • Example: 235U^{235}\text{U} + neutron → fission fragments + neutrons + energy

Fusion:

  • Light nuclei combine → heavier nucleus
  • Releases enormous energy
  • Powers the sun!
  • Example: 2H^2\text{H} + 3H^3\text{H}4He^4\text{He} + neutron + 17.6 MeV

Fusion releases MORE energy per nucleon than fission!


Radioactive Decay

Unstable nuclei decay spontaneously:

Types:

  • Alpha (α): 4He^4\text{He} nucleus, A↓4, Z↓2
  • Beta (β⁻): Electron, neutron→proton, A same, Z↑1
  • Gamma (γ): High-energy photon, A and Z same

Half-life t1/2t_{1/2}: N(t)=N0(12)t/t1/2N(t) = N_0 \left(\frac{1}{2}\right)^{t/t_{1/2}}

After one half-life: 50% remain After two: 25% remain After three: 12.5% remain


Conservation Laws

All nuclear reactions must conserve:

  1. Mass-energy: Total E (including mc²) conserved
  2. Charge: Total Z conserved
  3. Mass number: Total A conserved
  4. Momentum: Total p conserved

Problem-Solving Strategy

Photoelectric:

  1. Find photon energy: E=hfE = hf or E=hc/λE = hc/\lambda
  2. Apply: KEmax=hfϕKE_{max} = hf - \phi
  3. Check threshold: if f<f0f < f_0, no electrons!

Atomic transitions:

  1. Find energy levels: En=13.6/n2E_n = -13.6/n^2 eV
  2. Energy difference: ΔE=EfEi\Delta E = |E_f - E_i|
  3. Photon: λ=hc/ΔE\lambda = hc/\Delta E

Nuclear:

  1. Check conservation (A and Z)
  2. Calculate mass defect: Δm
  3. Energy: E=Δmc2E = \Delta m c^2

Common Mistakes

❌ Using wavelength in meters with h in J·s (watch units!) ❌ Thinking intensity affects electron KE (only frequency does!) ❌ Forgetting negative sign in atomic energy levels ❌ Not converting eV to Joules (or vice versa): 1 eV = 1.60×10⁻¹⁹ J ❌ Confusing emission (high→low) with absorption (low→high) ❌ Using half-life formula incorrectly (power is t/t_1/2, not just t!)

📚 Practice Problems

1Problem 1easy

Question:

Find the energy of a photon with wavelength 500 nm. Express in both Joules and eV.

💡 Show Solution

Given:

  • Wavelength: λ=500\lambda = 500 nm =5.00×107= 5.00 \times 10^{-7} m
  • Planck's constant: h=6.626×1034h = 6.626 \times 10^{-34} J·s
  • Speed of light: c=3.00×108c = 3.00 \times 10^8 m/s

Solution:

Photon energy: E=hcλ=(6.626×1034)(3.00×108)5.00×107E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34})(3.00 \times 10^8)}{5.00 \times 10^{-7}} E=1.988×10255.00×107=3.98×1019 JE = \frac{1.988 \times 10^{-25}}{5.00 \times 10^{-7}} = 3.98 \times 10^{-19} \text{ J}

Convert to eV: E=3.98×10191.60×1019=2.49 eVE = \frac{3.98 \times 10^{-19}}{1.60 \times 10^{-19}} = 2.49 \text{ eV}

Answer:

  • E = 3.98 × 10⁻¹⁹ J
  • E = 2.49 eV (green light)

2Problem 2easy

Question:

Find the energy of a photon with wavelength 500 nm. Express in both Joules and eV.

💡 Show Solution

Given:

  • Wavelength: λ=500\lambda = 500 nm =5.00×107= 5.00 \times 10^{-7} m
  • Planck's constant: h=6.626×1034h = 6.626 \times 10^{-34} J·s
  • Speed of light: c=3.00×108c = 3.00 \times 10^8 m/s

Solution:

Photon energy: E=hcλ=(6.626×1034)(3.00×108)5.00×107E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34})(3.00 \times 10^8)}{5.00 \times 10^{-7}} E=1.988×10255.00×107=3.98×1019 JE = \frac{1.988 \times 10^{-25}}{5.00 \times 10^{-7}} = 3.98 \times 10^{-19} \text{ J}

Convert to eV: E=3.98×10191.60×1019=2.49 eVE = \frac{3.98 \times 10^{-19}}{1.60 \times 10^{-19}} = 2.49 \text{ eV}

Answer:

  • E = 3.98 × 10⁻¹⁹ J
  • E = 2.49 eV (green light)

3Problem 3medium

Question:

Light with wavelength 400 nm strikes a metal surface with work function 2.0 eV. Find (a) maximum kinetic energy of ejected electrons, (b) stopping potential.

💡 Show Solution

Given:

  • Wavelength: λ=400\lambda = 400 nm =4.00×107= 4.00 \times 10^{-7} m
  • Work function: ϕ=2.0\phi = 2.0 eV =3.20×1019= 3.20 \times 10^{-19} J

Part (a): Maximum kinetic energy

First, find photon energy: E=hcλ=(6.626×1034)(3.00×108)4.00×107E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34})(3.00 \times 10^8)}{4.00 \times 10^{-7}} E=4.97×1019 J=3.11 eVE = 4.97 \times 10^{-19} \text{ J} = 3.11 \text{ eV}

Einstein's photoelectric equation: KEmax=hfϕ=3.112.0=1.11 eVKE_{max} = hf - \phi = 3.11 - 2.0 = 1.11 \text{ eV}

In Joules: KEmax=(1.11)(1.60×1019)=1.78×1019 JKE_{max} = (1.11)(1.60 \times 10^{-19}) = 1.78 \times 10^{-19} \text{ J}

Part (b): Stopping potential

eVs=KEmaxeV_s = KE_{max} Vs=KEmaxe=1.11 VV_s = \frac{KE_{max}}{e} = 1.11 \text{ V}

Answer:

  • (a) KE_max = 1.11 eV = 1.78 × 10⁻¹⁹ J
  • (b) V_s = 1.11 V

4Problem 4medium

Question:

Light with wavelength 400 nm strikes a metal surface with work function 2.0 eV. Find (a) maximum kinetic energy of ejected electrons, (b) stopping potential.

💡 Show Solution

Given:

  • Wavelength: λ=400\lambda = 400 nm =4.00×107= 4.00 \times 10^{-7} m
  • Work function: ϕ=2.0\phi = 2.0 eV =3.20×1019= 3.20 \times 10^{-19} J

Part (a): Maximum kinetic energy

First, find photon energy: E=hcλ=(6.626×1034)(3.00×108)4.00×107E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34})(3.00 \times 10^8)}{4.00 \times 10^{-7}} E=4.97×1019 J=3.11 eVE = 4.97 \times 10^{-19} \text{ J} = 3.11 \text{ eV}

Einstein's photoelectric equation: KEmax=hfϕ=3.112.0=1.11 eVKE_{max} = hf - \phi = 3.11 - 2.0 = 1.11 \text{ eV}

In Joules: KEmax=(1.11)(1.60×1019)=1.78×1019 JKE_{max} = (1.11)(1.60 \times 10^{-19}) = 1.78 \times 10^{-19} \text{ J}

Part (b): Stopping potential

eVs=KEmaxeV_s = KE_{max} Vs=KEmaxe=1.11 VV_s = \frac{KE_{max}}{e} = 1.11 \text{ V}

Answer:

  • (a) KE_max = 1.11 eV = 1.78 × 10⁻¹⁹ J
  • (b) V_s = 1.11 V

5Problem 5medium

Question:

Light of wavelength 400 nm strikes a metal surface. (a) What is the energy of each photon? (b) If the work function is 2.0 eV, what is the maximum kinetic energy of ejected electrons? Use h = 6.63 × 10⁻³⁴ J·s, c = 3.0 × 10⁸ m/s, 1 eV = 1.6 × 10⁻¹⁹ J.

💡 Show Solution

Solution:

Given: λ = 400 nm = 4.0 × 10⁻⁷ m, φ = 2.0 eV = 3.2 × 10⁻¹⁹ J

(a) Photon energy: E = hf = hc/λ E = (6.63 × 10⁻³⁴)(3.0 × 10⁸)/(4.0 × 10⁻⁷) E = (19.9 × 10⁻²⁶)/(4.0 × 10⁻⁷) E = 4.98 × 10⁻¹⁹ J = 3.1 eV

(b) Maximum kinetic energy (Photoelectric effect): KE_max = E - φ KE_max = 3.1 - 2.0 = 1.1 eV

Or in Joules: KE_max = 4.98 × 10⁻¹⁹ - 3.2 × 10⁻¹⁹ = 1.78 × 10⁻¹⁹ J

6Problem 6hard

Question:

A hydrogen atom electron transitions from n=3 to n=2. Find (a) energy of emitted photon, (b) wavelength of light.

💡 Show Solution

Given:

  • Initial state: ni=3n_i = 3
  • Final state: nf=2n_f = 2
  • Hydrogen energy levels: En=13.6/n2E_n = -13.6/n^2 eV

Part (a): Photon energy

Energy levels: E3=13.632=13.69=1.51 eVE_3 = -\frac{13.6}{3^2} = -\frac{13.6}{9} = -1.51 \text{ eV} E2=13.622=13.64=3.40 eVE_2 = -\frac{13.6}{2^2} = -\frac{13.6}{4} = -3.40 \text{ eV}

Photon energy (emission, so high → low): Ephoton=E3E2=1.51(3.40)=1.89 eVE_{photon} = E_3 - E_2 = -1.51 - (-3.40) = 1.89 \text{ eV}

In Joules: E=(1.89)(1.60×1019)=3.02×1019 JE = (1.89)(1.60 \times 10^{-19}) = 3.02 \times 10^{-19} \text{ J}

Part (b): Wavelength

λ=hcE=(6.626×1034)(3.00×108)3.02×1019\lambda = \frac{hc}{E} = \frac{(6.626 \times 10^{-34})(3.00 \times 10^8)}{3.02 \times 10^{-19}} λ=6.56×107 m=656 nm\lambda = 6.56 \times 10^{-7} \text{ m} = 656 \text{ nm}

Answer:

  • (a) E_photon = 1.89 eV
  • (b) λ = 656 nm (red light, Balmer series!)

This is the famous H-alpha line in hydrogen spectrum.

7Problem 7hard

Question:

In the hydrogen atom, an electron transitions from n = 3 to n = 2. (a) Calculate the energy of the emitted photon using E_n = -13.6 eV/n². (b) What is the wavelength of the emitted light? (c) What region of the spectrum is this?

💡 Show Solution

Solution:

(a) Photon energy: E₃ = -13.6/3² = -13.6/9 = -1.51 eV E₂ = -13.6/2² = -13.6/4 = -3.40 eV

ΔE = E₃ - E₂ = -1.51 - (-3.40) = 1.89 eV

Or: 1.89 eV × 1.6 × 10⁻¹⁹ J/eV = 3.02 × 10⁻¹⁹ J

(b) Wavelength: E = hc/λ λ = hc/E = (6.63 × 10⁻³⁴)(3.0 × 10⁸)/(3.02 × 10⁻¹⁹) λ = (19.9 × 10⁻²⁶)/(3.02 × 10⁻¹⁹) λ = 6.59 × 10⁻⁷ m = 659 nm

(c) Spectrum region: λ = 659 nm is in the visible red region (visible: 400-700 nm)

This is the first line of the Balmer series (transitions to n = 2).

8Problem 8hard

Question:

A hydrogen atom electron transitions from n=3 to n=2. Find (a) energy of emitted photon, (b) wavelength of light.

💡 Show Solution

Given:

  • Initial state: ni=3n_i = 3
  • Final state: nf=2n_f = 2
  • Hydrogen energy levels: En=13.6/n2E_n = -13.6/n^2 eV

Part (a): Photon energy

Energy levels: E3=13.632=13.69=1.51 eVE_3 = -\frac{13.6}{3^2} = -\frac{13.6}{9} = -1.51 \text{ eV} E2=13.622=13.64=3.40 eVE_2 = -\frac{13.6}{2^2} = -\frac{13.6}{4} = -3.40 \text{ eV}

Photon energy (emission, so high → low): Ephoton=E3E2=1.51(3.40)=1.89 eVE_{photon} = E_3 - E_2 = -1.51 - (-3.40) = 1.89 \text{ eV}

In Joules: E=(1.89)(1.60×1019)=3.02×1019 JE = (1.89)(1.60 \times 10^{-19}) = 3.02 \times 10^{-19} \text{ J}

Part (b): Wavelength

λ=hcE=(6.626×1034)(3.00×108)3.02×1019\lambda = \frac{hc}{E} = \frac{(6.626 \times 10^{-34})(3.00 \times 10^8)}{3.02 \times 10^{-19}} λ=6.56×107 m=656 nm\lambda = 6.56 \times 10^{-7} \text{ m} = 656 \text{ nm}

Answer:

  • (a) E_photon = 1.89 eV
  • (b) λ = 656 nm (red light, Balmer series!)

This is the famous H-alpha line in hydrogen spectrum.