Integration by Partial Fractions

Decomposing rational functions for integration

🔢 Integration by Partial Fractions

The Problem

How do we integrate rational functions (fractions with polynomials)?

Example: 1x21dx\int \frac{1}{x^2-1}\,dx

💡 Key Idea: Decompose the fraction into simpler fractions that we can integrate easily!


What is Partial Fraction Decomposition?

Break a complicated fraction into a sum of simpler fractions.

Example: 1x21=1(x1)(x+1)=Ax1+Bx+1\frac{1}{x^2-1} = \frac{1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}

Find AA and BB, then integrate each piece separately!


When to Use Partial Fractions

Requirements:

  1. Rational function: P(x)Q(x)\frac{P(x)}{Q(x)} where PP and QQ are polynomials
  2. Proper fraction: degree of P<P < degree of QQ
    • If not, use polynomial long division first!
  3. Factored denominator: Q(x)Q(x) must be factored

The Four Cases

Case 1: Distinct Linear Factors

Form: (xa)(xb)(xc)(x-a)(x-b)(x-c)\cdots

Decomposition: P(x)(xa)(xb)=Axa+Bxb\frac{P(x)}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}

Each linear factor gets one term with a constant numerator.


Case 2: Repeated Linear Factors

Form: (xa)n(x-a)^n

Decomposition: P(x)(xa)3=Axa+B(xa)2+C(xa)3\frac{P(x)}{(x-a)^3} = \frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{(x-a)^3}

Include all powers from 1 up to nn.


Case 3: Distinct Irreducible Quadratic Factors

Form: (ax2+bx+c)(ax^2+bx+c) where b24ac<0b^2-4ac < 0 (can't factor)

Decomposition: P(x)(xa)(x2+1)=Axa+Bx+Cx2+1\frac{P(x)}{(x-a)(x^2+1)} = \frac{A}{x-a} + \frac{Bx+C}{x^2+1}

Quadratic factor gets a linear numerator!


Case 4: Repeated Irreducible Quadratic Factors

Form: (ax2+bx+c)n(ax^2+bx+c)^n

Decomposition: P(x)(x2+1)2=Ax+Bx2+1+Cx+D(x2+1)2\frac{P(x)}{(x^2+1)^2} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2}

Include all powers with linear numerators.


Example 1: Distinct Linear Factors

Integrate 1x21dx\int \frac{1}{x^2-1}\,dx

Step 1: Factor denominator

x21=(x1)(x+1)x^2 - 1 = (x-1)(x+1)


Step 2: Set up partial fractions

1(x1)(x+1)=Ax1+Bx+1\frac{1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}


Step 3: Find A and B

Multiply both sides by (x1)(x+1)(x-1)(x+1):

1=A(x+1)+B(x1)1 = A(x+1) + B(x-1)

Method 1: Substitution

Let x=1x = 1: 1=A(2)+B(0)1 = A(2) + B(0)A=12A = \frac{1}{2}

Let x=1x = -1: 1=A(0)+B(2)1 = A(0) + B(-2)B=12B = -\frac{1}{2}


Step 4: Rewrite and integrate

1x21dx=(1/2x11/2x+1)dx\int \frac{1}{x^2-1}\,dx = \int \left(\frac{1/2}{x-1} - \frac{1/2}{x+1}\right)dx

=12lnx112lnx+1+C= \frac{1}{2}\ln|x-1| - \frac{1}{2}\ln|x+1| + C

=12lnx1x+1+C= \frac{1}{2}\ln\left|\frac{x-1}{x+1}\right| + C

Answer: 12lnx1x+1+C\frac{1}{2}\ln\left|\frac{x-1}{x+1}\right| + C


Example 2: Repeated Linear Factor

Integrate 2x+1x2(x1)dx\int \frac{2x+1}{x^2(x-1)}\,dx

Step 1: Set up partial fractions

Denominator has x2x^2 (repeated) and (x1)(x-1) (distinct).

2x+1x2(x1)=Ax+Bx2+Cx1\frac{2x+1}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}


Step 2: Find A, B, C

Multiply by x2(x1)x^2(x-1):

2x+1=Ax(x1)+B(x1)+Cx22x+1 = Ax(x-1) + B(x-1) + Cx^2

Let x=1x = 1: 3=C(1)3 = C(1)C=3C = 3

Let x=0x = 0: 1=B(1)1 = B(-1)B=1B = -1

Let x=2x = 2: 5=A(2)(1)+(1)(1)+3(4)5 = A(2)(1) + (-1)(1) + 3(4) 5=2A1+125 = 2A - 1 + 12 2A=62A = -6A=3A = -3


Step 3: Integrate

2x+1x2(x1)dx=(3x1x2+3x1)dx\int \frac{2x+1}{x^2(x-1)}\,dx = \int \left(-\frac{3}{x} - \frac{1}{x^2} + \frac{3}{x-1}\right)dx

=3lnx+1x+3lnx1+C= -3\ln|x| + \frac{1}{x} + 3\ln|x-1| + C

=3lnx1x+1x+C= 3\ln\left|\frac{x-1}{x}\right| + \frac{1}{x} + C

Answer: 3lnx1x+1x+C3\ln\left|\frac{x-1}{x}\right| + \frac{1}{x} + C


Example 3: Irreducible Quadratic

Integrate x(x1)(x2+1)dx\int \frac{x}{(x-1)(x^2+1)}\,dx

Step 1: Set up partial fractions

x(x1)(x2+1)=Ax1+Bx+Cx2+1\frac{x}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}

Note: x2+1x^2+1 gets a linear numerator!


Step 2: Find A, B, C

Multiply by (x1)(x2+1)(x-1)(x^2+1):

x=A(x2+1)+(Bx+C)(x1)x = A(x^2+1) + (Bx+C)(x-1)

Let x=1x = 1: 1=A(2)1 = A(2)A=12A = \frac{1}{2}

Expand and compare coefficients: x=Ax2+A+Bx2Bx+CxCx = Ax^2 + A + Bx^2 - Bx + Cx - C

Coefficient of x2x^2: 0=A+B0 = A + BB=12B = -\frac{1}{2}

Coefficient of xx: 1=B+C1 = -B + CC=112=12C = 1 - \frac{1}{2} = \frac{1}{2}


Step 3: Integrate

x(x1)(x2+1)dx=(1/2x1+x/2+1/2x2+1)dx\int \frac{x}{(x-1)(x^2+1)}\,dx = \int \left(\frac{1/2}{x-1} + \frac{-x/2 + 1/2}{x^2+1}\right)dx

=12lnx1+x/2x2+1dx+1/2x2+1dx= \frac{1}{2}\ln|x-1| + \int \frac{-x/2}{x^2+1}\,dx + \int \frac{1/2}{x^2+1}\,dx


For x/2x2+1dx\int \frac{-x/2}{x^2+1}\,dx, use u=x2+1u = x^2+1:

12xx2+1dx=14ln(x2+1)-\frac{1}{2}\int \frac{x}{x^2+1}\,dx = -\frac{1}{4}\ln(x^2+1)

For 1/2x2+1dx\int \frac{1/2}{x^2+1}\,dx:

12arctanx\frac{1}{2}\arctan x


Combine:

=12lnx114ln(x2+1)+12arctanx+C= \frac{1}{2}\ln|x-1| - \frac{1}{4}\ln(x^2+1) + \frac{1}{2}\arctan x + C

Answer: 12lnx114ln(x2+1)+12arctanx+C\frac{1}{2}\ln|x-1| - \frac{1}{4}\ln(x^2+1) + \frac{1}{2}\arctan x + C


Improper Fractions: Long Division First

If degree of numerator ≥ degree of denominator, divide first!

Example: x3x21\frac{x^3}{x^2-1}

x3x21=x+xx21\frac{x^3}{x^2-1} = x + \frac{x}{x^2-1}

Then use partial fractions on xx21\frac{x}{x^2-1}.


Method for Finding Constants

Method 1: Substitution (Cover-Up)

Substitute strategic values of xx to make terms disappear.

Works best for: distinct linear factors


Method 2: Comparing Coefficients

Expand and match coefficients of like powers.

Works for: all cases, especially quadratics


Method 3: Combination

Use substitution for easy ones, coefficients for the rest.

Most common approach!


⚠️ Common Mistakes

Mistake 1: Forgetting Long Division

If degree(numerator) ≥ degree(denominator), must divide first!


Mistake 2: Wrong Form for Quadratics

WRONG: Ax2+1\frac{A}{x^2+1}

RIGHT: Ax+Bx2+1\frac{Ax+B}{x^2+1} (linear numerator!)


Mistake 3: Missing Powers in Repeated Factors

For (x1)3(x-1)^3, you need: Ax1+B(x1)2+C(x1)3\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{(x-1)^3}

Don't skip the middle terms!


Mistake 4: Not Factoring Completely

Always factor the denominator completely first!

x21=(x1)(x+1)x^2-1 = (x-1)(x+1), not just x21x^2-1


Summary of Decomposition Rules

| Denominator Factor | Partial Fraction Form | |-------------------|----------------------| | (xa)(x-a) | Axa\frac{A}{x-a} | | (xa)2(x-a)^2 | Axa+B(xa)2\frac{A}{x-a} + \frac{B}{(x-a)^2} | | (xa)3(x-a)^3 | Axa+B(xa)2+C(xa)3\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{(x-a)^3} | | ax2+bx+cax^2+bx+c | Ax+Bax2+bx+c\frac{Ax+B}{ax^2+bx+c} | | (ax2+bx+c)2(ax^2+bx+c)^2 | Ax+Bax2+bx+c+Cx+D(ax2+bx+c)2\frac{Ax+B}{ax^2+bx+c} + \frac{Cx+D}{(ax^2+bx+c)^2} |


📝 Practice Strategy

  1. Check if fraction is proper (degree top < degree bottom)
  2. If improper, do long division first
  3. Factor denominator completely
  4. Set up partial fraction form based on factors
  5. Find constants using substitution and/or coefficients
  6. Rewrite integral as sum of simpler integrals
  7. Integrate each piece (use u-sub for quadratics if needed)
  8. Combine and simplify

📚 Practice Problems

1Problem 1medium

Question:

Evaluate 3x+5(x+1)(x+2)dx\int \frac{3x+5}{(x+1)(x+2)}\,dx using partial fractions.

💡 Show Solution

Step 1: Set up partial fractions

3x+5(x+1)(x+2)=Ax+1+Bx+2\frac{3x+5}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}


Step 2: Find A and B

Multiply by (x+1)(x+2)(x+1)(x+2):

3x+5=A(x+2)+B(x+1)3x+5 = A(x+2) + B(x+1)

Let x=1x = -1: 2=A(1)2 = A(1)A=2A = 2

Let x=2x = -2: 1=B(1)-1 = B(-1)B=1B = 1


Step 3: Verify

2x+1+1x+2=2(x+2)+(x+1)(x+1)(x+2)=3x+5(x+1)(x+2)\frac{2}{x+1} + \frac{1}{x+2} = \frac{2(x+2) + (x+1)}{(x+1)(x+2)} = \frac{3x+5}{(x+1)(x+2)}


Step 4: Integrate

3x+5(x+1)(x+2)dx=(2x+1+1x+2)dx\int \frac{3x+5}{(x+1)(x+2)}\,dx = \int \left(\frac{2}{x+1} + \frac{1}{x+2}\right)dx

=2lnx+1+lnx+2+C= 2\ln|x+1| + \ln|x+2| + C

Answer: 2lnx+1+lnx+2+C2\ln|x+1| + \ln|x+2| + C or ln(x+1)2(x+2)+C\ln|(x+1)^2(x+2)| + C

2Problem 2hard

Question:

Evaluate 3x+5x2+3x+2dx\int \frac{3x + 5}{x^2 + 3x + 2} \, dx using partial fractions.

💡 Show Solution

Solution:

Step 1: Factor the denominator.

x2+3x+2=(x+1)(x+2)x^2 + 3x + 2 = (x + 1)(x + 2)

Step 2: Set up partial fractions.

3x+5(x+1)(x+2)=Ax+1+Bx+2\frac{3x + 5}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}

Multiply both sides by (x+1)(x+2)(x+1)(x+2):

3x+5=A(x+2)+B(x+1)3x + 5 = A(x+2) + B(x+1)

Step 3: Solve for AA and BB.

Method 1 (substitution):

  • Let x=1x = -1: 3+5=A(1)-3 + 5 = A(1), so A=2A = 2
  • Let x=2x = -2: 6+5=B(1)-6 + 5 = B(-1), so B=1B = 1

Step 4: Integrate.

3x+5x2+3x+2dx=(2x+1+1x+2)dx\int \frac{3x + 5}{x^2 + 3x + 2} \, dx = \int \left(\frac{2}{x+1} + \frac{1}{x+2}\right) dx

=2lnx+1+lnx+2+C= 2\ln|x+1| + \ln|x+2| + C

=lnx+12+lnx+2+C= \ln|x+1|^2 + \ln|x+2| + C

=ln(x+1)2(x+2)+C= \ln|(x+1)^2(x+2)| + C

3Problem 3hard

Question:

Evaluate x2+1x(x1)2dx\int \frac{x^2+1}{x(x-1)^2}\,dx using partial fractions.

💡 Show Solution

Step 1: Set up partial fractions

Repeated factor (x1)2(x-1)^2:

x2+1x(x1)2=Ax+Bx1+C(x1)2\frac{x^2+1}{x(x-1)^2} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}


Step 2: Find A, B, C

Multiply by x(x1)2x(x-1)^2:

x2+1=A(x1)2+Bx(x1)+Cxx^2+1 = A(x-1)^2 + Bx(x-1) + Cx

Let x=0x = 0: 1=A(1)1 = A(1)A=1A = 1

Let x=1x = 1: 2=C(1)2 = C(1)C=2C = 2

Let x=2x = 2: 5=A(1)+B(2)(1)+C(2)5 = A(1) + B(2)(1) + C(2) 5=1+2B+45 = 1 + 2B + 4 2B=02B = 0B=0B = 0


Step 3: Integrate

x2+1x(x1)2dx=(1x+2(x1)2)dx\int \frac{x^2+1}{x(x-1)^2}\,dx = \int \left(\frac{1}{x} + \frac{2}{(x-1)^2}\right)dx

=lnx+2(x1)11+C= \ln|x| + 2 \cdot \frac{(x-1)^{-1}}{-1} + C

=lnx2x1+C= \ln|x| - \frac{2}{x-1} + C

Answer: lnx2x1+C\ln|x| - \frac{2}{x-1} + C

4Problem 4medium

Question:

Evaluate x3+xx2+4dx\int \frac{x^3+x}{x^2+4}\,dx using partial fractions.

💡 Show Solution

Step 1: Check if proper

Degree of numerator (3) ≥ degree of denominator (2).

Must do long division first!


Step 2: Polynomial long division

x3+xx2+4=x+x4xx2+4=x+3xx2+4\frac{x^3+x}{x^2+4} = x + \frac{x - 4x}{x^2+4} = x + \frac{-3x}{x^2+4}

Actually, let me redo this:

x3+x=x(x2+4)4x+x=x(x2+4)3xx^3 + x = x(x^2+4) - 4x + x = x(x^2+4) - 3x

x3+xx2+4=x3xx2+4\frac{x^3+x}{x^2+4} = x - \frac{3x}{x^2+4}


Step 3: Integrate

x3+xx2+4dx=xdx3xx2+4dx\int \frac{x^3+x}{x^2+4}\,dx = \int x\,dx - 3\int \frac{x}{x^2+4}\,dx

For the second integral, use u=x2+4u = x^2+4, du=2xdxdu = 2x\,dx:

xx2+4dx=12ln(x2+4)\int \frac{x}{x^2+4}\,dx = \frac{1}{2}\ln(x^2+4)


Step 4: Combine

=x22312ln(x2+4)+C= \frac{x^2}{2} - 3 \cdot \frac{1}{2}\ln(x^2+4) + C

=x2232ln(x2+4)+C= \frac{x^2}{2} - \frac{3}{2}\ln(x^2+4) + C

Answer: x2232ln(x2+4)+C\frac{x^2}{2} - \frac{3}{2}\ln(x^2+4) + C