Calculus with Parametric Equations

Derivatives, tangent lines, and arc length for parametric curves

๐Ÿ“Š Calculus with Parametric Equations

Finding dy/dx for Parametric Curves

For parametric equations x=f(t)x = f(t) and y=g(t)y = g(t):

dydx=dy/dtdx/dt=gโ€ฒ(t)fโ€ฒ(t)\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g'(t)}{f'(t)}

provided fโ€ฒ(t)โ‰ 0f'(t) \neq 0.

๐Ÿ’ก Key Idea: Use the chain rule! Since both xx and yy depend on tt, divide the rates of change.


Why This Formula Works

By the chain rule: dydt=dydxโ‹…dxdt\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}

Solving for dydx\frac{dy}{dx}: dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

Think: "How fast is yy changing compared to how fast xx is changing?"


Example 1: Finding dy/dx

For x=t2x = t^2, y=t3y = t^3, find dydx\frac{dy}{dx}.

Step 1: Find derivatives with respect to tt

dxdt=2t,dydt=3t2\frac{dx}{dt} = 2t, \quad \frac{dy}{dt} = 3t^2


Step 2: Apply formula

dydx=dy/dtdx/dt=3t22t=3t2\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2}{2t} = \frac{3t}{2}


Step 3: Express in terms of xx (optional)

Since x=t2x = t^2, we have t=ยฑxt = \pm\sqrt{x}

dydx=3x2ย orย โˆ’3x2\frac{dy}{dx} = \frac{3\sqrt{x}}{2} \text{ or } \frac{-3\sqrt{x}}{2}

(depending on which branch)


Example 2: Slope at a Point

For x=3cosโกtx = 3\cos t, y=2sinโกty = 2\sin t, find the slope at t=ฯ€4t = \frac{\pi}{4}.

Step 1: Find derivatives

dxdt=โˆ’3sinโกt,dydt=2cosโกt\frac{dx}{dt} = -3\sin t, \quad \frac{dy}{dt} = 2\cos t


Step 2: Find dy/dx

dydx=2cosโกtโˆ’3sinโกt=โˆ’2cosโกt3sinโกt=โˆ’23cotโกt\frac{dy}{dx} = \frac{2\cos t}{-3\sin t} = -\frac{2\cos t}{3\sin t} = -\frac{2}{3}\cot t


Step 3: Evaluate at t=ฯ€4t = \frac{\pi}{4}

dydxโˆฃt=ฯ€/4=โˆ’23cotโกฯ€4=โˆ’23(1)=โˆ’23\frac{dy}{dx}\bigg|_{t=\pi/4} = -\frac{2}{3}\cot\frac{\pi}{4} = -\frac{2}{3}(1) = -\frac{2}{3}

Answer: The slope at t=ฯ€4t = \frac{\pi}{4} is โˆ’23-\frac{2}{3}.


Horizontal and Vertical Tangents

Horizontal Tangent

Occurs when dydx=0\frac{dy}{dx} = 0

This happens when:

  • dydt=0\frac{dy}{dt} = 0 AND
  • dxdtโ‰ 0\frac{dx}{dt} \neq 0

Vertical Tangent

Occurs when dydx\frac{dy}{dx} is undefined

This happens when:

  • dxdt=0\frac{dx}{dt} = 0 AND
  • dydtโ‰ 0\frac{dy}{dt} \neq 0

Singular Point

If dxdt=0\frac{dx}{dt} = 0 AND dydt=0\frac{dy}{dt} = 0 simultaneously:

  • The curve might have a cusp, self-intersection, or other singularity
  • Need more analysis (possibly using higher derivatives)

Example 3: Finding Tangent Lines

For x=t3โˆ’3tx = t^3 - 3t, y=t2y = t^2, find all points where the tangent is horizontal.

Step 1: Find derivatives

dxdt=3t2โˆ’3,dydt=2t\frac{dx}{dt} = 3t^2 - 3, \quad \frac{dy}{dt} = 2t


Step 2: Set dydt=0\frac{dy}{dt} = 0

2t=0โ€…โ€ŠโŸนโ€…โ€Št=02t = 0 \implies t = 0


Step 3: Check that dxdtโ‰ 0\frac{dx}{dt} \neq 0 at t=0t = 0

dxdtโˆฃt=0=3(0)2โˆ’3=โˆ’3โ‰ 0\frac{dx}{dt}\bigg|_{t=0} = 3(0)^2 - 3 = -3 \neq 0 โœ“


Step 4: Find the point

At t=0t = 0: x=03โˆ’3(0)=0x = 0^3 - 3(0) = 0 y=02=0y = 0^2 = 0

Answer: Horizontal tangent at point (0,0)(0, 0).


Second Derivative

To find d2ydx2\frac{d^2y}{dx^2} for parametric curves:

d2ydx2=ddx(dydx)=d/dt(dy/dx)dx/dt\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d/dt(dy/dx)}{dx/dt}

Process:

  1. Find dydx\frac{dy}{dx} as before
  2. Take derivative with respect to tt: ddt(dydx)\frac{d}{dt}\left(\frac{dy}{dx}\right)
  3. Divide by dxdt\frac{dx}{dt}

Example 4: Second Derivative

For x=t2x = t^2, y=t3y = t^3, find d2ydx2\frac{d^2y}{dx^2}.

Step 1: Find first derivative

dydx=3t22t=3t2\frac{dy}{dx} = \frac{3t^2}{2t} = \frac{3t}{2}


Step 2: Differentiate with respect to tt

ddt(dydx)=ddt(3t2)=32\frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{3t}{2}\right) = \frac{3}{2}


Step 3: Divide by dxdt\frac{dx}{dt}

d2ydx2=3/22t=34t\frac{d^2y}{dx^2} = \frac{3/2}{2t} = \frac{3}{4t}

Answer: d2ydx2=34t\frac{d^2y}{dx^2} = \frac{3}{4t}


Arc Length of Parametric Curves

The arc length from t=at = a to t=bt = b is:

L=โˆซab(dxdt)2+(dydt)2โ€‰dtL = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}\,dt

Think: Speed = (dx/dt)2+(dy/dt)2\sqrt{(dx/dt)^2 + (dy/dt)^2}, integrate over time!


Where This Comes From

Infinitesimal arc length: ds=(dx)2+(dy)2ds = \sqrt{(dx)^2 + (dy)^2}

=(dxdtdt)2+(dydtdt)2= \sqrt{\left(\frac{dx}{dt}dt\right)^2 + \left(\frac{dy}{dt}dt\right)^2}

=(dxdt)2+(dydt)2โ€‰dt= \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}\,dt

Integrate from t=at = a to t=bt = b!


Example 5: Arc Length of Circle

Find the circumference of x=rcosโกtx = r\cos t, y=rsinโกty = r\sin t for 0โ‰คtโ‰ค2ฯ€0 \leq t \leq 2\pi.

Step 1: Find derivatives

dxdt=โˆ’rsinโกt,dydt=rcosโกt\frac{dx}{dt} = -r\sin t, \quad \frac{dy}{dt} = r\cos t


Step 2: Compute the integrand

(dxdt)2+(dydt)2=r2sinโก2t+r2cosโก2t\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{r^2\sin^2 t + r^2\cos^2 t}

=r2(sinโก2t+cosโก2t)=r2=r= \sqrt{r^2(\sin^2 t + \cos^2 t)} = \sqrt{r^2} = r


Step 3: Integrate

L=โˆซ02ฯ€rโ€‰dt=r[t]02ฯ€=r(2ฯ€โˆ’0)=2ฯ€rL = \int_0^{2\pi} r\,dt = r[t]_0^{2\pi} = r(2\pi - 0) = 2\pi r

Answer: 2ฯ€r2\pi r (the circumference formula!) โœ“


Example 6: Arc Length with Integration

Find the arc length of x=t2x = t^2, y=23t3y = \frac{2}{3}t^3 from t=0t = 0 to t=1t = 1.

Step 1: Find derivatives

dxdt=2t,dydt=2t2\frac{dx}{dt} = 2t, \quad \frac{dy}{dt} = 2t^2


Step 2: Set up integral

L=โˆซ01(2t)2+(2t2)2โ€‰dtL = \int_0^1 \sqrt{(2t)^2 + (2t^2)^2}\,dt

=โˆซ014t2+4t4โ€‰dt= \int_0^1 \sqrt{4t^2 + 4t^4}\,dt

=โˆซ014t2(1+t2)โ€‰dt= \int_0^1 \sqrt{4t^2(1 + t^2)}\,dt

=โˆซ012t1+t2โ€‰dt= \int_0^1 2t\sqrt{1 + t^2}\,dt


Step 3: Use substitution

Let u=1+t2u = 1 + t^2, du=2tโ€‰dtdu = 2t\,dt

When t=0t = 0: u=1u = 1 When t=1t = 1: u=2u = 2

L=โˆซ12uโ€‰du=[2u3/23]12L = \int_1^2 \sqrt{u}\,du = \left[\frac{2u^{3/2}}{3}\right]_1^2

=2(2)3/23โˆ’2(1)3/23=2(22)3โˆ’23= \frac{2(2)^{3/2}}{3} - \frac{2(1)^{3/2}}{3} = \frac{2(2\sqrt{2})}{3} - \frac{2}{3}

=42โˆ’23= \frac{4\sqrt{2} - 2}{3}

Answer: 42โˆ’23\frac{4\sqrt{2} - 2}{3} or 2(22โˆ’1)3\frac{2(2\sqrt{2} - 1)}{3}


Surface Area of Revolution

When rotating a parametric curve around the x-axis from t=at = a to t=bt = b:

S=2ฯ€โˆซaby(dxdt)2+(dydt)2โ€‰dtS = 2\pi \int_a^b y\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}\,dt

Around the y-axis:

S=2ฯ€โˆซabx(dxdt)2+(dydt)2โ€‰dtS = 2\pi \int_a^b x\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}\,dt


โš ๏ธ Common Mistakes

Mistake 1: Flipping the Fraction

WRONG: dydx=dx/dtdy/dt\frac{dy}{dx} = \frac{dx/dt}{dy/dt}

RIGHT: dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

The derivative you want is on top!


Mistake 2: Forgetting to Check Conditions

For horizontal tangent: dydt=0\frac{dy}{dt} = 0 AND dxdtโ‰ 0\frac{dx}{dt} \neq 0

Don't forget to verify the second condition!


Mistake 3: Wrong Arc Length Formula

WRONG: L=โˆซ(dx)2+(dy)2L = \int \sqrt{(dx)^2 + (dy)^2}

RIGHT: L=โˆซ(dx/dt)2+(dy/dt)2โ€‰dtL = \int \sqrt{(dx/dt)^2 + (dy/dt)^2}\,dt

Need to integrate with respect to the parameter!


Mistake 4: Second Derivative Error

d2ydx2โ‰ d2y/dt2d2x/dt2\frac{d^2y}{dx^2} \neq \frac{d^2y/dt^2}{d^2x/dt^2}

Must use: d2ydx2=d/dt(dy/dx)dx/dt\frac{d^2y}{dx^2} = \frac{d/dt(dy/dx)}{dx/dt}


Summary of Formulas

First Derivative:

dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

Second Derivative:

d2ydx2=d/dt(dy/dx)dx/dt\frac{d^2y}{dx^2} = \frac{d/dt(dy/dx)}{dx/dt}

Arc Length:

L=โˆซab(dxdt)2+(dydt)2โ€‰dtL = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}\,dt


๐Ÿ“ Practice Strategy

  1. Find dxdt\frac{dx}{dt} and dydt\frac{dy}{dt} first
  2. For slope: Divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}
  3. For horizontal tangent: Set dydt=0\frac{dy}{dt} = 0, check dxdtโ‰ 0\frac{dx}{dt} \neq 0
  4. For vertical tangent: Set dxdt=0\frac{dx}{dt} = 0, check dydtโ‰ 0\frac{dy}{dt} \neq 0
  5. For arc length: Use formula with square root, often needs u-substitution
  6. Check your setup before integrating
  7. Simplify under the square root if possible

๐Ÿ“š Practice Problems

1Problem 1medium

โ“ Question:

For x=2tโˆ’1x = 2t - 1, y=t2+3y = t^2 + 3, find the equation of the tangent line at t=2t = 2.

๐Ÿ’ก Show Solution

Step 1: Find the point at t=2t = 2

x=2(2)โˆ’1=3x = 2(2) - 1 = 3 y=22+3=7y = 2^2 + 3 = 7

Point: (3,7)(3, 7)


Step 2: Find derivatives

dxdt=2,dydt=2t\frac{dx}{dt} = 2, \quad \frac{dy}{dt} = 2t


Step 3: Find slope at t=2t = 2

dydx=dy/dtdx/dt=2t2=t\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t}{2} = t

At t=2t = 2: dydx=2\frac{dy}{dx} = 2


Step 4: Write tangent line equation

Using point-slope form with point (3,7)(3, 7) and slope m=2m = 2:

yโˆ’7=2(xโˆ’3)y - 7 = 2(x - 3) yโˆ’7=2xโˆ’6y - 7 = 2x - 6 y=2x+1y = 2x + 1

Answer: y=2x+1y = 2x + 1

2Problem 2medium

โ“ Question:

For the parametric curve x=t3โˆ’3tx = t^3 - 3t and y=t2y = t^2:

a) Find dydx\frac{dy}{dx} in terms of tt. b) Find d2ydx2\frac{d^2y}{dx^2} in terms of tt. c) Find the equation of the tangent line at t=2t = 2.

๐Ÿ’ก Show Solution

Solution:

Part (a): dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

dxdt=3t2โˆ’3\frac{dx}{dt} = 3t^2 - 3

dydt=2t\frac{dy}{dt} = 2t

dydx=2t3t2โˆ’3=2t3(t2โˆ’1)\frac{dy}{dx} = \frac{2t}{3t^2 - 3} = \frac{2t}{3(t^2 - 1)}

Part (b): d2ydx2=ddx[dydx]=d/dt[dy/dx]dx/dt\frac{d^2y}{dx^2} = \frac{d}{dx}\left[\frac{dy}{dx}\right] = \frac{d/dt[dy/dx]}{dx/dt}

ddt[2t3(t2โˆ’1)]=2โ‹…3(t2โˆ’1)โˆ’2tโ‹…6t9(t2โˆ’1)2\frac{d}{dt}\left[\frac{2t}{3(t^2-1)}\right] = \frac{2 \cdot 3(t^2-1) - 2t \cdot 6t}{9(t^2-1)^2}

=6t2โˆ’6โˆ’12t29(t2โˆ’1)2=โˆ’6t2โˆ’69(t2โˆ’1)2=โˆ’6(t2+1)9(t2โˆ’1)2= \frac{6t^2 - 6 - 12t^2}{9(t^2-1)^2} = \frac{-6t^2 - 6}{9(t^2-1)^2} = \frac{-6(t^2+1)}{9(t^2-1)^2}

d2ydx2=โˆ’6(t2+1)/[9(t2โˆ’1)2]3(t2โˆ’1)=โˆ’6(t2+1)27(t2โˆ’1)3=โˆ’2(t2+1)9(t2โˆ’1)3\frac{d^2y}{dx^2} = \frac{-6(t^2+1)/[9(t^2-1)^2]}{3(t^2-1)} = \frac{-6(t^2+1)}{27(t^2-1)^3} = \frac{-2(t^2+1)}{9(t^2-1)^3}

Part (c): At t=2t = 2:

x=8โˆ’6=2x = 8 - 6 = 2, y=4y = 4

dydx=43(3)=49\frac{dy}{dx} = \frac{4}{3(3)} = \frac{4}{9}

Tangent line: yโˆ’4=49(xโˆ’2)y - 4 = \frac{4}{9}(x - 2)

y=49xโˆ’89+4=49x+289y = \frac{4}{9}x - \frac{8}{9} + 4 = \frac{4}{9}x + \frac{28}{9}

3Problem 3hard

โ“ Question:

For x=cosโกtx = \cos t, y=sinโก2ty = \sin 2t where 0โ‰คtโ‰ค2ฯ€0 \leq t \leq 2\pi, find all points where the tangent line is vertical.

๐Ÿ’ก Show Solution

Step 1: Find derivatives

dxdt=โˆ’sinโกt\frac{dx}{dt} = -\sin t dydt=2cosโก2t\frac{dy}{dt} = 2\cos 2t


Step 2: For vertical tangent, set dxdt=0\frac{dx}{dt} = 0

โˆ’sinโกt=0-\sin t = 0 sinโกt=0\sin t = 0

In [0,2ฯ€][0, 2\pi]: t=0,ฯ€,2ฯ€t = 0, \pi, 2\pi


Step 3: Check that dydtโ‰ 0\frac{dy}{dt} \neq 0 at these values

At t=0t = 0: dydt=2cosโก(0)=2โ‰ 0\frac{dy}{dt} = 2\cos(0) = 2 \neq 0 โœ“

At t=ฯ€t = \pi: dydt=2cosโก(2ฯ€)=2โ‰ 0\frac{dy}{dt} = 2\cos(2\pi) = 2 \neq 0 โœ“

At t=2ฯ€t = 2\pi: dydt=2cosโก(4ฯ€)=2โ‰ 0\frac{dy}{dt} = 2\cos(4\pi) = 2 \neq 0 โœ“


Step 4: Find the points

At t=0t = 0: x=cosโก0=1x = \cos 0 = 1, y=sinโก0=0y = \sin 0 = 0 โ†’ (1,0)(1, 0)

At t=ฯ€t = \pi: x=cosโกฯ€=โˆ’1x = \cos \pi = -1, y=sinโก2ฯ€=0y = \sin 2\pi = 0 โ†’ (โˆ’1,0)(-1, 0)

At t=2ฯ€t = 2\pi: x=cosโก2ฯ€=1x = \cos 2\pi = 1, y=sinโก4ฯ€=0y = \sin 4\pi = 0 โ†’ (1,0)(1, 0)

(Note: t=0t=0 and t=2ฯ€t=2\pi give the same point)


Answer: Vertical tangents at (1,0)(1, 0) and (โˆ’1,0)(-1, 0).

4Problem 4expert

โ“ Question:

Find the arc length of x=etcosโกtx = e^t\cos t, y=etsinโกty = e^t\sin t from t=0t = 0 to t=ฯ€/2t = \pi/2.

๐Ÿ’ก Show Solution

Step 1: Find derivatives

Using product rule:

dxdt=etcosโกt+et(โˆ’sinโกt)=et(cosโกtโˆ’sinโกt)\frac{dx}{dt} = e^t\cos t + e^t(-\sin t) = e^t(\cos t - \sin t)

dydt=etsinโกt+etcosโกt=et(sinโกt+cosโกt)\frac{dy}{dt} = e^t\sin t + e^t\cos t = e^t(\sin t + \cos t)


Step 2: Compute (dx/dt)2+(dy/dt)2(dx/dt)^2 + (dy/dt)^2

(dx/dt)2=e2t(cosโกtโˆ’sinโกt)2=e2t(cosโก2tโˆ’2sinโกtcosโกt+sinโก2t)(dx/dt)^2 = e^{2t}(\cos t - \sin t)^2 = e^{2t}(\cos^2 t - 2\sin t\cos t + \sin^2 t)

=e2t(1โˆ’2sinโกtcosโกt)= e^{2t}(1 - 2\sin t\cos t)

(dy/dt)2=e2t(sinโกt+cosโกt)2=e2t(sinโก2t+2sinโกtcosโกt+cosโก2t)(dy/dt)^2 = e^{2t}(\sin t + \cos t)^2 = e^{2t}(\sin^2 t + 2\sin t\cos t + \cos^2 t)

=e2t(1+2sinโกtcosโกt)= e^{2t}(1 + 2\sin t\cos t)


Step 3: Add

(dx/dt)2+(dy/dt)2=e2t(1โˆ’2sinโกtcosโกt)+e2t(1+2sinโกtcosโกt)(dx/dt)^2 + (dy/dt)^2 = e^{2t}(1 - 2\sin t\cos t) + e^{2t}(1 + 2\sin t\cos t)

=e2t(2)=2e2t= e^{2t}(2) = 2e^{2t}


Step 4: Set up arc length integral

L=โˆซ0ฯ€/22e2tโ€‰dt=โˆซ0ฯ€/2et2โ€‰dtL = \int_0^{\pi/2} \sqrt{2e^{2t}}\,dt = \int_0^{\pi/2} e^t\sqrt{2}\,dt

=2โˆซ0ฯ€/2etโ€‰dt= \sqrt{2}\int_0^{\pi/2} e^t\,dt


Step 5: Integrate

=2[et]0ฯ€/2= \sqrt{2}[e^t]_0^{\pi/2}

=2(eฯ€/2โˆ’e0)= \sqrt{2}(e^{\pi/2} - e^0)

=2(eฯ€/2โˆ’1)= \sqrt{2}(e^{\pi/2} - 1)

Answer: 2(eฯ€/2โˆ’1)\sqrt{2}(e^{\pi/2} - 1)

5Problem 5hard

โ“ Question:

Find dy/dx and dยฒy/dxยฒ for the parametric curve x = tยณ, y = tยฒ.

๐Ÿ’ก Show Solution

Step 1: Find dx/dt and dy/dt: dx/dt = 3tยฒ dy/dt = 2t

Step 2: Find dy/dx using chain rule: dy/dx = (dy/dt)/(dx/dt) = 2t/(3tยฒ) = 2/(3t)

Step 3: Find dยฒy/dxยฒ: dยฒy/dxยฒ = d/dx[dy/dx] = (d/dt[dy/dx])/(dx/dt)

Step 4: Find d/dt[2/(3t)]: d/dt[2/(3t)] = (2/3)ยทd/dt[tโปยน] = (2/3)ยท(-tโปยฒ) = -2/(3tยฒ)

Step 5: Divide by dx/dt: dยฒy/dxยฒ = (-2/(3tยฒ))/(3tยฒ) = -2/(3tยฒยท3tยฒ) = -2/(9tโด)

Answer: dy/dx = 2/(3t), dยฒy/dxยฒ = -2/(9tโด)