Calculus with Parametric Equations

Derivatives, tangent lines, and arc length for parametric curves

📊 Calculus with Parametric Equations

Finding dy/dx for Parametric Curves

For parametric equations x=f(t)x = f(t) and y=g(t)y = g(t):

dydx=dy/dtdx/dt=g(t)f(t)\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g'(t)}{f'(t)}

provided f(t)0f'(t) \neq 0.

💡 Key Idea: Use the chain rule! Since both xx and yy depend on tt, divide the rates of change.


Why This Formula Works

By the chain rule: dydt=dydxdxdt\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}

Solving for dydx\frac{dy}{dx}: dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

Think: "How fast is yy changing compared to how fast xx is changing?"


Example 1: Finding dy/dx

For x=t2x = t^2, y=t3y = t^3, find dydx\frac{dy}{dx}.

Step 1: Find derivatives with respect to tt

dxdt=2t,dydt=3t2\frac{dx}{dt} = 2t, \quad \frac{dy}{dt} = 3t^2


Step 2: Apply formula

dydx=dy/dtdx/dt=3t22t=3t2\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2}{2t} = \frac{3t}{2}


Step 3: Express in terms of xx (optional)

Since x=t2x = t^2, we have t=±xt = \pm\sqrt{x}

dydx=3x2 or 3x2\frac{dy}{dx} = \frac{3\sqrt{x}}{2} \text{ or } \frac{-3\sqrt{x}}{2}

(depending on which branch)


Example 2: Slope at a Point

For x=3costx = 3\cos t, y=2sinty = 2\sin t, find the slope at t=π4t = \frac{\pi}{4}.

Step 1: Find derivatives

dxdt=3sint,dydt=2cost\frac{dx}{dt} = -3\sin t, \quad \frac{dy}{dt} = 2\cos t


Step 2: Find dy/dx

dydx=2cost3sint=2cost3sint=23cott\frac{dy}{dx} = \frac{2\cos t}{-3\sin t} = -\frac{2\cos t}{3\sin t} = -\frac{2}{3}\cot t


Step 3: Evaluate at t=π4t = \frac{\pi}{4}

dydxt=π/4=23cotπ4=23(1)=23\frac{dy}{dx}\bigg|_{t=\pi/4} = -\frac{2}{3}\cot\frac{\pi}{4} = -\frac{2}{3}(1) = -\frac{2}{3}

Answer: The slope at t=π4t = \frac{\pi}{4} is 23-\frac{2}{3}.


Horizontal and Vertical Tangents

Horizontal Tangent

Occurs when dydx=0\frac{dy}{dx} = 0

This happens when:

  • dydt=0\frac{dy}{dt} = 0 AND
  • dxdt0\frac{dx}{dt} \neq 0

Vertical Tangent

Occurs when dydx\frac{dy}{dx} is undefined

This happens when:

  • dxdt=0\frac{dx}{dt} = 0 AND
  • dydt0\frac{dy}{dt} \neq 0

Singular Point

If dxdt=0\frac{dx}{dt} = 0 AND dydt=0\frac{dy}{dt} = 0 simultaneously:

  • The curve might have a cusp, self-intersection, or other singularity
  • Need more analysis (possibly using higher derivatives)

Example 3: Finding Tangent Lines

For x=t33tx = t^3 - 3t, y=t2y = t^2, find all points where the tangent is horizontal.

Step 1: Find derivatives

dxdt=3t23,dydt=2t\frac{dx}{dt} = 3t^2 - 3, \quad \frac{dy}{dt} = 2t


Step 2: Set dydt=0\frac{dy}{dt} = 0

2t=0    t=02t = 0 \implies t = 0


Step 3: Check that dxdt0\frac{dx}{dt} \neq 0 at t=0t = 0

dxdtt=0=3(0)23=30\frac{dx}{dt}\bigg|_{t=0} = 3(0)^2 - 3 = -3 \neq 0


Step 4: Find the point

At t=0t = 0: x=033(0)=0x = 0^3 - 3(0) = 0 y=02=0y = 0^2 = 0

Answer: Horizontal tangent at point (0,0)(0, 0).


Second Derivative

To find d2ydx2\frac{d^2y}{dx^2} for parametric curves:

d2ydx2=ddx(dydx)=d/dt(dy/dx)dx/dt\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d/dt(dy/dx)}{dx/dt}

Process:

  1. Find dydx\frac{dy}{dx} as before
  2. Take derivative with respect to tt: ddt(dydx)\frac{d}{dt}\left(\frac{dy}{dx}\right)
  3. Divide by dxdt\frac{dx}{dt}

Example 4: Second Derivative

For x=t2x = t^2, y=t3y = t^3, find d2ydx2\frac{d^2y}{dx^2}.

Step 1: Find first derivative

dydx=3t22t=3t2\frac{dy}{dx} = \frac{3t^2}{2t} = \frac{3t}{2}


Step 2: Differentiate with respect to tt

ddt(dydx)=ddt(3t2)=32\frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{3t}{2}\right) = \frac{3}{2}


Step 3: Divide by dxdt\frac{dx}{dt}

d2ydx2=3/22t=34t\frac{d^2y}{dx^2} = \frac{3/2}{2t} = \frac{3}{4t}

Answer: d2ydx2=34t\frac{d^2y}{dx^2} = \frac{3}{4t}


Arc Length of Parametric Curves

The arc length from t=at = a to t=bt = b is:

L=ab(dxdt)2+(dydt)2dtL = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}\,dt

Think: Speed = (dx/dt)2+(dy/dt)2\sqrt{(dx/dt)^2 + (dy/dt)^2}, integrate over time!


Where This Comes From

Infinitesimal arc length: ds=(dx)2+(dy)2ds = \sqrt{(dx)^2 + (dy)^2}

=(dxdtdt)2+(dydtdt)2= \sqrt{\left(\frac{dx}{dt}dt\right)^2 + \left(\frac{dy}{dt}dt\right)^2}

=(dxdt)2+(dydt)2dt= \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}\,dt

Integrate from t=at = a to t=bt = b!


Example 5: Arc Length of Circle

Find the circumference of x=rcostx = r\cos t, y=rsinty = r\sin t for 0t2π0 \leq t \leq 2\pi.

Step 1: Find derivatives

dxdt=rsint,dydt=rcost\frac{dx}{dt} = -r\sin t, \quad \frac{dy}{dt} = r\cos t


Step 2: Compute the integrand

(dxdt)2+(dydt)2=r2sin2t+r2cos2t\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{r^2\sin^2 t + r^2\cos^2 t}

=r2(sin2t+cos2t)=r2=r= \sqrt{r^2(\sin^2 t + \cos^2 t)} = \sqrt{r^2} = r


Step 3: Integrate

L=02πrdt=r[t]02π=r(2π0)=2πrL = \int_0^{2\pi} r\,dt = r[t]_0^{2\pi} = r(2\pi - 0) = 2\pi r

Answer: 2πr2\pi r (the circumference formula!) ✓


Example 6: Arc Length with Integration

Find the arc length of x=t2x = t^2, y=23t3y = \frac{2}{3}t^3 from t=0t = 0 to t=1t = 1.

Step 1: Find derivatives

dxdt=2t,dydt=2t2\frac{dx}{dt} = 2t, \quad \frac{dy}{dt} = 2t^2


Step 2: Set up integral

L=01(2t)2+(2t2)2dtL = \int_0^1 \sqrt{(2t)^2 + (2t^2)^2}\,dt

=014t2+4t4dt= \int_0^1 \sqrt{4t^2 + 4t^4}\,dt

=014t2(1+t2)dt= \int_0^1 \sqrt{4t^2(1 + t^2)}\,dt

=012t1+t2dt= \int_0^1 2t\sqrt{1 + t^2}\,dt


Step 3: Use substitution

Let u=1+t2u = 1 + t^2, du=2tdtdu = 2t\,dt

When t=0t = 0: u=1u = 1 When t=1t = 1: u=2u = 2

L=12udu=[2u3/23]12L = \int_1^2 \sqrt{u}\,du = \left[\frac{2u^{3/2}}{3}\right]_1^2

=2(2)3/232(1)3/23=2(22)323= \frac{2(2)^{3/2}}{3} - \frac{2(1)^{3/2}}{3} = \frac{2(2\sqrt{2})}{3} - \frac{2}{3}

=4223= \frac{4\sqrt{2} - 2}{3}

Answer: 4223\frac{4\sqrt{2} - 2}{3} or 2(221)3\frac{2(2\sqrt{2} - 1)}{3}


Surface Area of Revolution

When rotating a parametric curve around the x-axis from t=at = a to t=bt = b:

S=2πaby(dxdt)2+(dydt)2dtS = 2\pi \int_a^b y\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}\,dt

Around the y-axis:

S=2πabx(dxdt)2+(dydt)2dtS = 2\pi \int_a^b x\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}\,dt


⚠️ Common Mistakes

Mistake 1: Flipping the Fraction

WRONG: dydx=dx/dtdy/dt\frac{dy}{dx} = \frac{dx/dt}{dy/dt}

RIGHT: dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

The derivative you want is on top!


Mistake 2: Forgetting to Check Conditions

For horizontal tangent: dydt=0\frac{dy}{dt} = 0 AND dxdt0\frac{dx}{dt} \neq 0

Don't forget to verify the second condition!


Mistake 3: Wrong Arc Length Formula

WRONG: L=(dx)2+(dy)2L = \int \sqrt{(dx)^2 + (dy)^2}

RIGHT: L=(dx/dt)2+(dy/dt)2dtL = \int \sqrt{(dx/dt)^2 + (dy/dt)^2}\,dt

Need to integrate with respect to the parameter!


Mistake 4: Second Derivative Error

d2ydx2d2y/dt2d2x/dt2\frac{d^2y}{dx^2} \neq \frac{d^2y/dt^2}{d^2x/dt^2}

Must use: d2ydx2=d/dt(dy/dx)dx/dt\frac{d^2y}{dx^2} = \frac{d/dt(dy/dx)}{dx/dt}


Summary of Formulas

First Derivative:

dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

Second Derivative:

d2ydx2=d/dt(dy/dx)dx/dt\frac{d^2y}{dx^2} = \frac{d/dt(dy/dx)}{dx/dt}

Arc Length:

L=ab(dxdt)2+(dydt)2dtL = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}\,dt


📝 Practice Strategy

  1. Find dxdt\frac{dx}{dt} and dydt\frac{dy}{dt} first
  2. For slope: Divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}
  3. For horizontal tangent: Set dydt=0\frac{dy}{dt} = 0, check dxdt0\frac{dx}{dt} \neq 0
  4. For vertical tangent: Set dxdt=0\frac{dx}{dt} = 0, check dydt0\frac{dy}{dt} \neq 0
  5. For arc length: Use formula with square root, often needs u-substitution
  6. Check your setup before integrating
  7. Simplify under the square root if possible

📚 Practice Problems

1Problem 1medium

Question:

For x=2t1x = 2t - 1, y=t2+3y = t^2 + 3, find the equation of the tangent line at t=2t = 2.

💡 Show Solution

Step 1: Find the point at t=2t = 2

x=2(2)1=3x = 2(2) - 1 = 3 y=22+3=7y = 2^2 + 3 = 7

Point: (3,7)(3, 7)


Step 2: Find derivatives

dxdt=2,dydt=2t\frac{dx}{dt} = 2, \quad \frac{dy}{dt} = 2t


Step 3: Find slope at t=2t = 2

dydx=dy/dtdx/dt=2t2=t\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t}{2} = t

At t=2t = 2: dydx=2\frac{dy}{dx} = 2


Step 4: Write tangent line equation

Using point-slope form with point (3,7)(3, 7) and slope m=2m = 2:

y7=2(x3)y - 7 = 2(x - 3) y7=2x6y - 7 = 2x - 6 y=2x+1y = 2x + 1

Answer: y=2x+1y = 2x + 1

2Problem 2medium

Question:

For the parametric curve x=t33tx = t^3 - 3t and y=t2y = t^2:

a) Find dydx\frac{dy}{dx} in terms of tt. b) Find d2ydx2\frac{d^2y}{dx^2} in terms of tt. c) Find the equation of the tangent line at t=2t = 2.

💡 Show Solution

Solution:

Part (a): dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

dxdt=3t23\frac{dx}{dt} = 3t^2 - 3

dydt=2t\frac{dy}{dt} = 2t

dydx=2t3t23=2t3(t21)\frac{dy}{dx} = \frac{2t}{3t^2 - 3} = \frac{2t}{3(t^2 - 1)}

Part (b): d2ydx2=ddx[dydx]=d/dt[dy/dx]dx/dt\frac{d^2y}{dx^2} = \frac{d}{dx}\left[\frac{dy}{dx}\right] = \frac{d/dt[dy/dx]}{dx/dt}

ddt[2t3(t21)]=23(t21)2t6t9(t21)2\frac{d}{dt}\left[\frac{2t}{3(t^2-1)}\right] = \frac{2 \cdot 3(t^2-1) - 2t \cdot 6t}{9(t^2-1)^2}

=6t2612t29(t21)2=6t269(t21)2=6(t2+1)9(t21)2= \frac{6t^2 - 6 - 12t^2}{9(t^2-1)^2} = \frac{-6t^2 - 6}{9(t^2-1)^2} = \frac{-6(t^2+1)}{9(t^2-1)^2}

d2ydx2=6(t2+1)/[9(t21)2]3(t21)=6(t2+1)27(t21)3=2(t2+1)9(t21)3\frac{d^2y}{dx^2} = \frac{-6(t^2+1)/[9(t^2-1)^2]}{3(t^2-1)} = \frac{-6(t^2+1)}{27(t^2-1)^3} = \frac{-2(t^2+1)}{9(t^2-1)^3}

Part (c): At t=2t = 2:

x=86=2x = 8 - 6 = 2, y=4y = 4

dydx=43(3)=49\frac{dy}{dx} = \frac{4}{3(3)} = \frac{4}{9}

Tangent line: y4=49(x2)y - 4 = \frac{4}{9}(x - 2)

y=49x89+4=49x+289y = \frac{4}{9}x - \frac{8}{9} + 4 = \frac{4}{9}x + \frac{28}{9}

3Problem 3hard

Question:

For x=costx = \cos t, y=sin2ty = \sin 2t where 0t2π0 \leq t \leq 2\pi, find all points where the tangent line is vertical.

💡 Show Solution

Step 1: Find derivatives

dxdt=sint\frac{dx}{dt} = -\sin t dydt=2cos2t\frac{dy}{dt} = 2\cos 2t


Step 2: For vertical tangent, set dxdt=0\frac{dx}{dt} = 0

sint=0-\sin t = 0 sint=0\sin t = 0

In [0,2π][0, 2\pi]: t=0,π,2πt = 0, \pi, 2\pi


Step 3: Check that dydt0\frac{dy}{dt} \neq 0 at these values

At t=0t = 0: dydt=2cos(0)=20\frac{dy}{dt} = 2\cos(0) = 2 \neq 0

At t=πt = \pi: dydt=2cos(2π)=20\frac{dy}{dt} = 2\cos(2\pi) = 2 \neq 0

At t=2πt = 2\pi: dydt=2cos(4π)=20\frac{dy}{dt} = 2\cos(4\pi) = 2 \neq 0


Step 4: Find the points

At t=0t = 0: x=cos0=1x = \cos 0 = 1, y=sin0=0y = \sin 0 = 0(1,0)(1, 0)

At t=πt = \pi: x=cosπ=1x = \cos \pi = -1, y=sin2π=0y = \sin 2\pi = 0(1,0)(-1, 0)

At t=2πt = 2\pi: x=cos2π=1x = \cos 2\pi = 1, y=sin4π=0y = \sin 4\pi = 0(1,0)(1, 0)

(Note: t=0t=0 and t=2πt=2\pi give the same point)


Answer: Vertical tangents at (1,0)(1, 0) and (1,0)(-1, 0).

4Problem 4expert

Question:

Find the arc length of x=etcostx = e^t\cos t, y=etsinty = e^t\sin t from t=0t = 0 to t=π/2t = \pi/2.

💡 Show Solution

Step 1: Find derivatives

Using product rule:

dxdt=etcost+et(sint)=et(costsint)\frac{dx}{dt} = e^t\cos t + e^t(-\sin t) = e^t(\cos t - \sin t)

dydt=etsint+etcost=et(sint+cost)\frac{dy}{dt} = e^t\sin t + e^t\cos t = e^t(\sin t + \cos t)


Step 2: Compute (dx/dt)2+(dy/dt)2(dx/dt)^2 + (dy/dt)^2

(dx/dt)2=e2t(costsint)2=e2t(cos2t2sintcost+sin2t)(dx/dt)^2 = e^{2t}(\cos t - \sin t)^2 = e^{2t}(\cos^2 t - 2\sin t\cos t + \sin^2 t)

=e2t(12sintcost)= e^{2t}(1 - 2\sin t\cos t)

(dy/dt)2=e2t(sint+cost)2=e2t(sin2t+2sintcost+cos2t)(dy/dt)^2 = e^{2t}(\sin t + \cos t)^2 = e^{2t}(\sin^2 t + 2\sin t\cos t + \cos^2 t)

=e2t(1+2sintcost)= e^{2t}(1 + 2\sin t\cos t)


Step 3: Add

(dx/dt)2+(dy/dt)2=e2t(12sintcost)+e2t(1+2sintcost)(dx/dt)^2 + (dy/dt)^2 = e^{2t}(1 - 2\sin t\cos t) + e^{2t}(1 + 2\sin t\cos t)

=e2t(2)=2e2t= e^{2t}(2) = 2e^{2t}


Step 4: Set up arc length integral

L=0π/22e2tdt=0π/2et2dtL = \int_0^{\pi/2} \sqrt{2e^{2t}}\,dt = \int_0^{\pi/2} e^t\sqrt{2}\,dt

=20π/2etdt= \sqrt{2}\int_0^{\pi/2} e^t\,dt


Step 5: Integrate

=2[et]0π/2= \sqrt{2}[e^t]_0^{\pi/2}

=2(eπ/2e0)= \sqrt{2}(e^{\pi/2} - e^0)

=2(eπ/21)= \sqrt{2}(e^{\pi/2} - 1)

Answer: 2(eπ/21)\sqrt{2}(e^{\pi/2} - 1)