Net Ionic Equations and Spectator Ions

Learn to write complete ionic and net ionic equations, identify spectator ions, and understand precipitation, acid-base, and gas-forming reactions at the ionic level.

Net Ionic Equations and Spectator Ions

Introduction

Why net ionic equations?

  • Show what's actually happening at the ionic level
  • Eliminate spectator ions (don't participate)
  • Focus on the chemical change
  • More accurate representation of aqueous reactions

Three types of equations:

  1. Molecular equation (complete formula units)
  2. Complete ionic equation (all ions shown)
  3. Net ionic equation (only reacting species)

Types of Equations

Molecular Equation

Shows: Complete formula units of all reactants and products

Example:

\ceAgNO3(aq)+NaCl(aq)>AgCl(s)+NaNO3(aq)\ce{AgNO3(aq) + NaCl(aq) -> AgCl(s) + NaNO3(aq)}

Characteristics:

  • Looks like a typical balanced equation
  • Doesn't show ionic nature of species
  • Good for stoichiometry calculations
  • Doesn't reveal mechanism

Complete Ionic Equation

Shows: All strong electrolytes as separated ions

Rules for complete ionic equations:

Write as ions (aq):

  • Strong acids: HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄
  • Strong bases: Group 1 hydroxides (NaOH, KOH), Ba(OH)₂, Sr(OH)₂, Ca(OH)₂
  • Soluble ionic compounds (use solubility rules)

Keep as molecules:

  • Solids (s)
  • Liquids (l)
  • Gases (g)
  • Weak acids and bases
  • Insoluble compounds
  • Water

Example (same reaction):

\ceAg+(aq)+NO3(aq)+Na+(aq)+Cl(aq)>AgCl(s)+Na+(aq)+NO3(aq)\ce{Ag+(aq) + NO3-(aq) + Na+(aq) + Cl-(aq) -> AgCl(s) + Na+(aq) + NO3-(aq)}

All ions separated except AgCl (precipitate)

Net Ionic Equation

Shows: Only species that undergo chemical change

Eliminate: Spectator ions (appear on both sides unchanged)

Example (same reaction):

Complete ionic:

\ceAg+(aq)+NO3(aq)+Na+(aq)+Cl(aq)>AgCl(s)+Na+(aq)+NO3(aq)\ce{Ag+(aq) + NO3-(aq) + Na+(aq) + Cl-(aq) -> AgCl(s) + Na+(aq) + NO3-(aq)}

Identify spectators:

  • Na⁺ appears on both sides → spectator
  • NO₃⁻ appears on both sides → spectator

Cancel spectators:

\ceAg+(aq)+NO3(aq)+Na+(aq)+Cl(aq)>AgCl(s)+Na+(aq)+NO3(aq)\ce{Ag+(aq) + \cancel{NO3-(aq)} + \cancel{Na+(aq)} + Cl-(aq) -> AgCl(s) + \cancel{Na+(aq)} + \cancel{NO3-(aq)}}

Net ionic equation:

\ceAg+(aq)+Cl(aq)>AgCl(s)\ce{Ag+(aq) + Cl-(aq) -> AgCl(s)}

This shows the essential chemical change!

Spectator Ions

Spectator ions: Ions present in solution but don't participate in reaction

  • Appear on both sides of complete ionic equation
  • Remain dissolved and unchanged
  • Don't affect chemical change
  • Important for charge balance but not for reaction

How to identify:

  1. Write complete ionic equation
  2. Find ions that appear on both sides
  3. Those are spectators

Example:

\ce2KOH(aq)+H2SO4(aq)>K2SO4(aq)+2H2O(l)\ce{2KOH(aq) + H2SO4(aq) -> K2SO4(aq) + 2H2O(l)}

Complete ionic:

\ce2K+(aq)+2OH(aq)+2H+(aq)+SO42(aq)>2K+(aq)+SO42(aq)+2H2O(l)\ce{2K+(aq) + 2OH-(aq) + 2H+(aq) + SO4^{2-}(aq) -> 2K+(aq) + SO4^{2-}(aq) + 2H2O(l)}

Spectators: K⁺ and SO₄²⁻

Net ionic:

\ce2OH(aq)+2H+(aq)>2H2O(l)\ce{2OH-(aq) + 2H+(aq) -> 2H2O(l)}

Or simplified:

\ceOH(aq)+H+(aq)>H2O(l)\ce{OH-(aq) + H+(aq) -> H2O(l)}

Writing Net Ionic Equations

Step-by-Step Procedure

Step 1: Write balanced molecular equation

  • Include states (s, l, g, aq)
  • Balance atoms and charges

Step 2: Write complete ionic equation

  • Separate strong electrolytes into ions
  • Keep solids, liquids, gases, and weak electrolytes together

Step 3: Identify spectator ions

  • Find ions unchanged on both sides

Step 4: Write net ionic equation

  • Remove spectator ions
  • Simplify coefficients if possible
  • Check that atoms and charges balance

Example: Precipitation

Step 1: Molecular

\cePb(NO3)2(aq)+2KI(aq)>PbI2(s)+2KNO3(aq)\ce{Pb(NO3)2(aq) + 2KI(aq) -> PbI2(s) + 2KNO3(aq)}

Step 2: Complete ionic

\cePb2+(aq)+2NO3(aq)+2K+(aq)+2I(aq)>PbI2(s)+2K+(aq)+2NO3(aq)\ce{Pb^{2+}(aq) + 2NO3-(aq) + 2K+(aq) + 2I-(aq) -> PbI2(s) + 2K+(aq) + 2NO3-(aq)}

Step 3: Identify spectators

  • K⁺: both sides
  • NO₃⁻: both sides

Step 4: Net ionic

\cePb2+(aq)+2I(aq)>PbI2(s)\ce{Pb^{2+}(aq) + 2I-(aq) -> PbI2(s)}

Check:

  • Atoms: 1 Pb, 2 I (both sides) ✓
  • Charge: +2 + 2(-1) = 0 left, 0 right ✓

Common Types of Net Ionic Equations

1. Precipitation Reactions

Pattern: Cation + Anion → Insoluble salt

Example 1:

\ceAg+(aq)+Cl(aq)>AgCl(s)\ce{Ag+(aq) + Cl-(aq) -> AgCl(s)}

Example 2:

\ceBa2+(aq)+SO42(aq)>BaSO4(s)\ce{Ba^{2+}(aq) + SO4^{2-}(aq) -> BaSO4(s)}

Example 3:

\ceCa2+(aq)+CO32(aq)>CaCO3(s)\ce{Ca^{2+}(aq) + CO3^{2-}(aq) -> CaCO3(s)}

Driving force: Formation of insoluble solid

2. Acid-Base Neutralization

Strong acid + Strong base:

General net ionic equation:

\ceH+(aq)+OH(aq)>H2O(l)\ce{H+(aq) + OH-(aq) -> H2O(l)}

This is the net ionic equation for ALL strong acid + strong base reactions!

Example 1: HCl + NaOH

\ceHCl(aq)+NaOH(aq)>NaCl(aq)+H2O(l)\ce{HCl(aq) + NaOH(aq) -> NaCl(aq) + H2O(l)}

Net ionic:

\ceH+(aq)+OH(aq)>H2O(l)\ce{H+(aq) + OH-(aq) -> H2O(l)}

Example 2: H₂SO₄ + KOH

\ceH2SO4(aq)+2KOH(aq)>K2SO4(aq)+2H2O(l)\ce{H2SO4(aq) + 2KOH(aq) -> K2SO4(aq) + 2H2O(l)}

Net ionic:

\ceH+(aq)+OH(aq)>H2O(l)\ce{H+(aq) + OH-(aq) -> H2O(l)}

Weak acid + Strong base:

Weak acid stays together (not fully ionized)

Example: Acetic acid + NaOH

\ceCH3COOH(aq)+NaOH(aq)>CH3COONa(aq)+H2O(l)\ce{CH3COOH(aq) + NaOH(aq) -> CH3COONa(aq) + H2O(l)}

Net ionic:

\ceCH3COOH(aq)+OH(aq)>CH3COO(aq)+H2O(l)\ce{CH3COOH(aq) + OH-(aq) -> CH3COO-(aq) + H2O(l)}

Note: CH₃COOH stays together (weak acid)

3. Gas-Forming Reactions

Carbonate/Bicarbonate + Acid → CO₂ gas

Example 1: Carbonate

\ce2HCl(aq)+Na2CO3(aq)>2NaCl(aq)+H2O(l)+CO2(g)\ce{2HCl(aq) + Na2CO3(aq) -> 2NaCl(aq) + H2O(l) + CO2(g)}

Net ionic:

\ce2H+(aq)+CO32(aq)>H2O(l)+CO2(g)\ce{2H+(aq) + CO3^{2-}(aq) -> H2O(l) + CO2(g)}

Example 2: Bicarbonate

\ceHCl(aq)+NaHCO3(aq)>NaCl(aq)+H2O(l)+CO2(g)\ce{HCl(aq) + NaHCO3(aq) -> NaCl(aq) + H2O(l) + CO2(g)}

Net ionic:

\ceH+(aq)+HCO3(aq)>H2O(l)+CO2(g)\ce{H+(aq) + HCO3-(aq) -> H2O(l) + CO2(g)}

Sulfite + Acid → SO₂ gas

\ce2H+(aq)+SO32(aq)>H2O(l)+SO2(g)\ce{2H+(aq) + SO3^{2-}(aq) -> H2O(l) + SO2(g)}

Sulfide + Acid → H₂S gas

\ce2H+(aq)+S2(aq)>H2S(g)\ce{2H+(aq) + S^{2-}(aq) -> H2S(g)}

Ammonium salt + Strong base → NH₃ gas

\ceNH4+(aq)+OH(aq)>NH3(g)+H2O(l)\ce{NH4+(aq) + OH-(aq) -> NH3(g) + H2O(l)}

4. Oxidation-Reduction (Redox)

Electron transfer reactions

Example: Zn + Cu²⁺

\ceZn(s)+Cu2+(aq)>Zn2+(aq)+Cu(s)\ce{Zn(s) + Cu^{2+}(aq) -> Zn^{2+}(aq) + Cu(s)}

No spectators (all species participate)

This IS the net ionic equation

Rules for States in Net Ionic Equations

Aqueous (aq):

  • Strong electrolytes that dissociate
  • Soluble ionic compounds
  • Strong acids
  • Strong bases

Solid (s):

  • Precipitates (insoluble compounds)
  • Pure metals

Liquid (l):

  • Water (when product)
  • Pure molecular liquids

Gas (g):

  • Gases that escape (CO₂, H₂S, NH₃, SO₂)

Checking Net Ionic Equations

Two things must balance:

1. Mass Balance (Atoms)

Count each element on both sides

Example:

\ceFe3+(aq)+3OH(aq)>Fe(OH)3(s)\ce{Fe^{3+}(aq) + 3OH-(aq) -> Fe(OH)3(s)}

Left: 1 Fe, 3 O, 3 H Right: 1 Fe, 3 O, 3 H ✓

2. Charge Balance

Sum of charges must equal on both sides

Example:

\ceFe3+(aq)+3OH(aq)>Fe(OH)3(s)\ce{Fe^{3+}(aq) + 3OH-(aq) -> Fe(OH)3(s)}

Left: +3 + 3(-1) = 0 Right: 0 (neutral solid) ✓

Common mistake: Forgetting to balance charges!

Special Cases

Case 1: No Reaction

If all ions are spectators → No net ionic equation

Example:

\ceNaCl(aq)+KNO3(aq)>NaNO3(aq)+KCl(aq)\ce{NaCl(aq) + KNO3(aq) -> NaNO3(aq) + KCl(aq)}

All products soluble → all ions are spectators

Net ionic: None (or write "No reaction")

No driving force:

  • No precipitate
  • No water formed
  • No gas formed
  • No electron transfer

Case 2: Molecular Compounds React

If reactants are molecular (not ionic)

Example:

\ceNH3(aq)+HCl(aq)>NH4Cl(aq)\ce{NH3(aq) + HCl(aq) -> NH4Cl(aq)}

Net ionic:

\ceNH3(aq)+H+(aq)>NH4+(aq)\ce{NH3(aq) + H+(aq) -> NH4+(aq)}

NH₃ stays together (weak base)

Case 3: Polyatomic Ions Stay Together

Common mistake: Breaking up polyatomic ions

Wrong: SO₄²⁻ → S⁶⁺ + 4O²⁻

Right: SO₄²⁻ stays as one unit

Polyatomic ions that stay together:

  • SO₄²⁻, NO₃⁻, CO₃²⁻, PO₄³⁻
  • ClO₄⁻, ClO₃⁻, MnO₄⁻
  • NH₄⁺, C₂H₃O₂⁻

Exception: Insoluble compounds or molecules

Summary of Net Ionic Equation Types

| Type | Molecular Example | Net Ionic | Driving Force | |------|-------------------|-----------|---------------| | Precipitation | AgNO₃ + NaCl | Ag⁺ + Cl⁻ → AgCl(s) | Solid forms | | Acid-Base | HCl + NaOH | H⁺ + OH⁻ → H₂O | Water forms | | Gas formation | HCl + Na₂CO₃ | 2H⁺ + CO₃²⁻ → H₂O + CO₂(g) | Gas escapes | | Redox | Zn + CuSO₄ | Zn + Cu²⁺ → Zn²⁺ + Cu | Electron transfer |

Practice Strategy

When writing net ionic equations:

  1. ✓ Start with balanced molecular equation
  2. ✓ Assign correct states
  3. ✓ Separate strong electrolytes
  4. ✓ Keep weak electrolytes, solids, gases together
  5. ✓ Identify and cancel spectators
  6. ✓ Check atom balance
  7. ✓ Check charge balance
  8. ✓ Simplify coefficients if possible

Common strong electrolytes to memorize:

  • Strong acids: HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄
  • Strong bases: NaOH, KOH, LiOH, Ba(OH)₂, Sr(OH)₂, Ca(OH)₂
  • Most salts (if soluble)

Common weak electrolytes:

  • Weak acids: CH₃COOH, HF, H₂CO₃, H₃PO₄
  • Weak bases: NH₃, amines
  • Water (H₂O)

📚 Practice Problems

1Problem 1easy

Question:

Write the complete ionic and net ionic equations for: BaCl₂(aq) + Na₂SO₄(aq) → BaSO₄(s) + 2NaCl(aq)

💡 Show Solution

Solution:

Given molecular equation:

\ceBaCl2(aq)+Na2SO4(aq)>BaSO4(s)+2NaCl(aq)\ce{BaCl2(aq) + Na2SO4(aq) -> BaSO4(s) + 2NaCl(aq)}

Task: Write complete ionic and net ionic equations


Step 1: Identify which species dissociate

Reactants:

  • BaCl₂(aq): Soluble ionic compound → dissociates

    • Ba²⁺ and Cl⁻ ions
  • Na₂SO₄(aq): Soluble ionic compound → dissociates

    • Na⁺ and SO₄²⁻ ions

Products:

  • BaSO₄(s): Precipitate (insoluble) → stays together

    • Keep as BaSO₄(s)
  • NaCl(aq): Soluble ionic compound → dissociates

    • Na⁺ and Cl⁻ ions

Key point: Solids don't dissociate in ionic equations!


Step 2: Write complete ionic equation

Dissociate all aqueous ionic compounds:

BaCl₂(aq):

  • Formula: BaCl₂
  • Ions: 1 Ba²⁺ + 2 Cl⁻

Na₂SO₄(aq):

  • Formula: Na₂SO₄
  • Ions: 2 Na⁺ + 1 SO₄²⁻

2NaCl(aq):

  • Formula: 2 NaCl
  • Ions: 2 Na⁺ + 2 Cl⁻

Complete ionic equation:

\ceBa2+(aq)+2Cl(aq)+2Na+(aq)+SO42(aq)>BaSO4(s)+2Na+(aq)+2Cl(aq)\ce{Ba^{2+}(aq) + 2Cl^-(aq) + 2Na^+(aq) + SO4^{2-}(aq) -> BaSO4(s) + 2Na^+(aq) + 2Cl^-(aq)}

Answer - Complete ionic:

\ceBa2+(aq)+2Cl(aq)+2Na+(aq)+SO42(aq)>BaSO4(s)+2Na+(aq)+2Cl(aq)\boxed{\ce{Ba^{2+}(aq) + 2Cl^-(aq) + 2Na^+(aq) + SO4^{2-}(aq) -> BaSO4(s) + 2Na^+(aq) + 2Cl^-(aq)}}


Step 3: Identify spectator ions

Look for ions appearing on both sides unchanged:

Left side:

  • Ba²⁺(aq)
  • 2Cl⁻(aq)
  • 2Na⁺(aq)
  • SO₄²⁻(aq)

Right side:

  • BaSO₄(s) - not an ion!
  • 2Na⁺(aq)
  • 2Cl⁻(aq)

Spectator ions:

  • 2Na⁺: Appears on both sides as 2Na⁺(aq)
  • 2Cl⁻: Appears on both sides as 2Cl⁻(aq)

Ions that react:

  • Ba²⁺: Left side as ion, right side in solid
  • SO₄²⁻: Left side as ion, right side in solid

Step 4: Cancel spectator ions

\ceBa2+(aq)+2Cl(aq)+2Na+(aq)+SO42(aq)>BaSO4(s)+2Na+(aq)+2Cl(aq)\ce{Ba^{2+}(aq) + \cancel{2Cl^-(aq)} + \cancel{2Na^+(aq)} + SO4^{2-}(aq) -> BaSO4(s) + \cancel{2Na^+(aq)} + \cancel{2Cl^-(aq)}}


Step 5: Write net ionic equation

What remains after canceling:

\ceBa2+(aq)+SO42(aq)>BaSO4(s)\ce{Ba^{2+}(aq) + SO4^{2-}(aq) -> BaSO4(s)}

Answer - Net ionic:

\ceBa2+(aq)+SO42(aq)>BaSO4(s)\boxed{\ce{Ba^{2+}(aq) + SO4^{2-}(aq) -> BaSO4(s)}}


Step 6: Verify the net ionic equation

Check 1: Atom balance

Left side: 1 Ba, 1 S, 4 O Right side: 1 Ba, 1 S, 4 O ✓

Check 2: Charge balance

Left side: (+2) + (-2) = 0 Right side: 0 (neutral solid) ✓

Both balanced!


Summary:

| Type | Equation | |------|----------| | Molecular | BaCl₂(aq) + Na₂SO₄(aq) → BaSO₄(s) + 2NaCl(aq) | | Complete Ionic | Ba²⁺(aq) + 2Cl⁻(aq) + 2Na⁺(aq) + SO₄²⁻(aq) → BaSO₄(s) + 2Na⁺(aq) + 2Cl⁻(aq) | | Net Ionic | Ba²⁺(aq) + SO₄²⁻(aq) → BaSO₄(s) | | Spectators | Na⁺, Cl⁻ |


Interpretation:

What the net ionic equation tells us:

  • Essential change: Ba²⁺ ions + SO₄²⁻ ions combine to form solid BaSO₄
  • Spectators ignored: Na⁺ and Cl⁻ just "watch" the reaction
  • Driving force: Formation of insoluble BaSO₄ precipitate

Why this matters:

  • Net ionic shows ACTUAL chemical change
  • Same net ionic equation for ANY soluble barium salt + ANY soluble sulfate
  • Example: Ba(NO₃)₂ + K₂SO₄ gives same net ionic!

General pattern for this type:

\ceBa2++SO42>BaSO4(s)\ce{Ba^{2+} + SO4^{2-} -> BaSO4(s)}

Any source of Ba²⁺ + any source of SO₄²⁻ → BaSO₄ precipitate

Observable evidence:

  • Clear solutions mixed
  • White precipitate forms immediately
  • Solution becomes cloudy/milky

Applications:

  • Test for sulfate ions (add Ba²⁺ solution)
  • Test for barium ions (add SO₄²⁻ solution)
  • Qualitative analysis

2Problem 2medium

Question:

Write the net ionic equation for the reaction between aqueous solutions of hydrochloric acid and sodium carbonate. The products are sodium chloride, water, and carbon dioxide gas.

💡 Show Solution

Solution:

Given information:

  • Reactants: HCl(aq) and Na₂CO₃(aq)
  • Products: NaCl, H₂O, CO₂(g)
  • This is an acid-carbonate reaction (gas-forming)

Step 1: Write balanced molecular equation

Reactants:

  • HCl(aq) - hydrochloric acid
  • Na₂CO₃(aq) - sodium carbonate

Products:

  • NaCl(aq) - sodium chloride (soluble)
  • H₂O(l) - water
  • CO₂(g) - carbon dioxide gas

Unbalanced:

\ceHCl(aq)+Na2CO3(aq)>NaCl(aq)+H2O(l)+CO2(g)\ce{HCl(aq) + Na2CO3(aq) -> NaCl(aq) + H2O(l) + CO2(g)}

Balance:

Check atoms:

  • H: 1 left, 2 right (from H₂O)
  • Cl: 1 left, 1 right
  • Na: 2 left, 1 right
  • C: 1 left, 1 right
  • O: 3 left, 3 right (1 in H₂O, 2 in CO₂)

Need 2 HCl and 2 NaCl:

\ce2HCl(aq)+Na2CO3(aq)>2NaCl(aq)+H2O(l)+CO2(g)\ce{2HCl(aq) + Na2CO3(aq) -> 2NaCl(aq) + H2O(l) + CO2(g)}

Final check:

  • H: 2, 2 ✓
  • Cl: 2, 2 ✓
  • Na: 2, 2 ✓
  • C: 1, 1 ✓
  • O: 3, 3 ✓

Balanced molecular equation:

\ce2HCl(aq)+Na2CO3(aq)>2NaCl(aq)+H2O(l)+CO2(g)\boxed{\ce{2HCl(aq) + Na2CO3(aq) -> 2NaCl(aq) + H2O(l) + CO2(g)}}


Step 2: Write complete ionic equation

Identify what dissociates:

HCl(aq): Strong acid → completely dissociates

  • H⁺(aq) + Cl⁻(aq)
  • 2HCl → 2H⁺ + 2Cl⁻

Na₂CO₃(aq): Soluble ionic compound → dissociates

  • 2Na⁺(aq) + CO₃²⁻(aq)

NaCl(aq): Soluble ionic compound → dissociates

  • Na⁺(aq) + Cl⁻(aq)
  • 2NaCl → 2Na⁺ + 2Cl⁻

H₂O(l): Liquid → stays together (molecular)

CO₂(g): Gas → stays together (molecular)

Complete ionic equation:

\ce2H+(aq)+2Cl(aq)+2Na+(aq)+CO32(aq)>2Na+(aq)+2Cl(aq)+H2O(l)+CO2(g)\ce{2H+(aq) + 2Cl-(aq) + 2Na+(aq) + CO3^{2-}(aq) -> 2Na+(aq) + 2Cl-(aq) + H2O(l) + CO2(g)}


Step 3: Identify spectator ions

Compare both sides:

Left side:

  • 2H⁺(aq)
  • 2Cl⁻(aq)
  • 2Na⁺(aq)
  • CO₃²⁻(aq)

Right side:

  • 2Na⁺(aq)
  • 2Cl⁻(aq)
  • H₂O(l)
  • CO₂(g)

Spectator ions (appear unchanged on both sides):

  • 2Na⁺(aq)
  • 2Cl⁻(aq)

Reacting species:

  • 2H⁺ → becomes part of H₂O
  • CO₃²⁻ → becomes part of H₂O and CO₂

Step 4: Cancel spectator ions

\ce2H+(aq)+2Cl(aq)+2Na+(aq)+CO32(aq)>2Na+(aq)+2Cl(aq)+H2O(l)+CO2(g)\ce{2H+(aq) + \cancel{2Cl-(aq)} + \cancel{2Na+(aq)} + CO3^{2-}(aq) -> \cancel{2Na+(aq)} + \cancel{2Cl-(aq)} + H2O(l) + CO2(g)}


Step 5: Write net ionic equation

\ce2H+(aq)+CO32(aq)>H2O(l)+CO2(g)\ce{2H+(aq) + CO3^{2-}(aq) -> H2O(l) + CO2(g)}

Answer:

\ce2H+(aq)+CO32(aq)>H2O(l)+CO2(g)\boxed{\ce{2H+(aq) + CO3^{2-}(aq) -> H2O(l) + CO2(g)}}


Step 6: Verify balance

Atom balance:

  • H: 2 left, 2 right (in H₂O) ✓
  • C: 1 left, 1 right (in CO₂) ✓
  • O: 3 left, 3 right (1 in H₂O, 2 in CO₂) ✓

Charge balance:

  • Left: 2(+1) + (-2) = +2 - 2 = 0
  • Right: 0 (all neutral molecules) ✓

Both balanced!


Interpretation and Analysis:

What does this equation show?

  • Essential change: H⁺ ions react with CO₃²⁻ ions
  • Products: Water and CO₂ gas
  • Driving forces:
    1. Formation of water (stable molecule)
    2. Formation of gas (escapes solution)

Why CO₂ forms:

Step-by-step mechanism:

  1. First H⁺ reacts with CO₃²⁻:

\ceH++CO32>HCO3\ce{H+ + CO3^{2-} -> HCO3-} (bicarbonate)

  1. Second H⁺ reacts with HCO₃⁻:

\ceH++HCO3>H2CO3\ce{H+ + HCO3- -> H2CO3} (carbonic acid)

  1. Carbonic acid unstable, decomposes:

\ceH2CO3>H2O+CO2(g)\ce{H2CO3 -> H2O + CO2(g)}

Net result: Same as our net ionic equation!


General applicability:

This net ionic equation applies to:

  • ANY acid + carbonate
  • Doesn't matter what the spectator ions are

Examples with same net ionic:

  1. Sulfuric acid + potassium carbonate:

\ceH2SO4+K2CO3>K2SO4+H2O+CO2\ce{H2SO4 + K2CO3 -> K2SO4 + H2O + CO2}

Net ionic: Same! \ce2H++CO32>H2O+CO2\ce{2H+ + CO3^{2-} -> H2O + CO2}

  1. Nitric acid + calcium carbonate:

\ce2HNO3+CaCO3>Ca(NO3)2+H2O+CO2\ce{2HNO3 + CaCO3 -> Ca(NO3)2 + H2O + CO2}

Net ionic: Same! \ce2H++CO32>H2O+CO2\ce{2H+ + CO3^{2-} -> H2O + CO2}


Observable evidence:

In the lab, you would see:

  • Vigorous bubbling (CO₂ gas escaping)
  • "Fizzing" or "effervescence"
  • Gas can be tested:
    • Turns limewater cloudy
    • Extinguishes burning splint

This reaction is used for:

  • Antacids (neutralize stomach acid)
    • CaCO₃ + HCl → CO₂ (burping)
  • Baking: baking soda (NaHCO₃) + acid
  • Cleaning: vinegar + baking soda
  • Testing for carbonates in qualitative analysis

Comparison to bicarbonate:

If using NaHCO₃ (bicarbonate) instead:

\ceHCl+NaHCO3>NaCl+H2O+CO2\ce{HCl + NaHCO3 -> NaCl + H2O + CO2}

Net ionic:

\ceH+(aq)+HCO3(aq)>H2O(l)+CO2(g)\ce{H+(aq) + HCO3-(aq) -> H2O(l) + CO2(g)}

Notice: Only need 1 H⁺ (not 2) for bicarbonate


Summary:

| Equation Type | Equation | |---------------|----------| | Molecular | 2HCl + Na₂CO₃ → 2NaCl + H₂O + CO₂ | | Complete Ionic | 2H⁺ + 2Cl⁻ + 2Na⁺ + CO₃²⁻ → 2Na⁺ + 2Cl⁻ + H₂O + CO₂ | | Net Ionic | 2H⁺ + CO₃²⁻ → H₂O + CO₂ | | Spectators | Na⁺, Cl⁻ | | Driving Forces | Water formation, gas evolution |

Key takeaway: Any strong acid + carbonate → water + CO₂ gas

3Problem 3hard

Question:

Consider the following three reactions. For each: (i) write the complete ionic equation, (ii) identify spectator ions, (iii) write the net ionic equation. (a) Fe(NO₃)₃(aq) + 3NaOH(aq) → Fe(OH)₃(s) + 3NaNO₃(aq), (b) HNO₃(aq) + KOH(aq) → KNO₃(aq) + H₂O(l), (c) NH₄Cl(aq) + NaOH(aq) → NaCl(aq) + NH₃(g) + H₂O(l)

💡 Show Solution

Solution:

Given: Three balanced molecular equations

Task: For each reaction, write complete ionic and net ionic equations


Reaction (a): Fe(NO₃)₃ + 3NaOH → Fe(OH)₃ + 3NaNO₃

Type: Precipitation reaction

(i) Complete ionic equation

Identify what dissociates:

Fe(NO₃)₃(aq): Soluble ionic compound

  • Fe³⁺(aq) + 3NO₃⁻(aq)

3NaOH(aq): Strong base (soluble)

  • 3Na⁺(aq) + 3OH⁻(aq)

Fe(OH)₃(s): Precipitate (insoluble) - stays together!

3NaNO₃(aq): Soluble ionic compound

  • 3Na⁺(aq) + 3NO₃⁻(aq)

Complete ionic:

\ceFe3+(aq)+3NO3(aq)+3Na+(aq)+3OH(aq)>Fe(OH)3(s)+3Na+(aq)+3NO3(aq)\boxed{\ce{Fe^{3+}(aq) + 3NO3-(aq) + 3Na+(aq) + 3OH-(aq) -> Fe(OH)3(s) + 3Na+(aq) + 3NO3-(aq)}}

(ii) Identify spectator ions

Compare both sides:

Spectators (appear unchanged):

  • 3Na⁺(aq): Both sides
  • 3NO₃⁻(aq): Both sides

Reacting species:

  • Fe³⁺ and OH⁻ → form Fe(OH)₃(s)

(iii) Net ionic equation

Cancel spectators:

\ceFe3+(aq)+3NO3(aq)+3Na+(aq)+3OH(aq)>Fe(OH)3(s)+3Na+(aq)+3NO3(aq)\ce{Fe^{3+}(aq) + \cancel{3NO3-(aq)} + \cancel{3Na+(aq)} + 3OH-(aq) -> Fe(OH)3(s) + \cancel{3Na+(aq)} + \cancel{3NO3-(aq)}}

Net ionic:

\ceFe3+(aq)+3OH(aq)>Fe(OH)3(s)\boxed{\ce{Fe^{3+}(aq) + 3OH-(aq) -> Fe(OH)3(s)}}

Verification:

  • Atoms: 1 Fe, 3 O, 3 H (both sides) ✓
  • Charge: (+3) + 3(-1) = 0 left, 0 right ✓

Driving force: Formation of insoluble Fe(OH)₃ precipitate (rust-colored)


Reaction (b): HNO₃ + KOH → KNO₃ + H₂O

Type: Acid-base neutralization (strong acid + strong base)

(i) Complete ionic equation

Identify what dissociates:

HNO₃(aq): Strong acid

  • H⁺(aq) + NO₃⁻(aq)

KOH(aq): Strong base

  • K⁺(aq) + OH⁻(aq)

KNO₃(aq): Soluble ionic compound

  • K⁺(aq) + NO₃⁻(aq)

H₂O(l): Liquid - stays together!

Complete ionic:

\ceH+(aq)+NO3(aq)+K+(aq)+OH(aq)>K+(aq)+NO3(aq)+H2O(l)\boxed{\ce{H+(aq) + NO3-(aq) + K+(aq) + OH-(aq) -> K+(aq) + NO3-(aq) + H2O(l)}}

(ii) Identify spectator ions

Spectators (appear unchanged):

  • K⁺(aq): Both sides
  • NO₃⁻(aq): Both sides

Reacting species:

  • H⁺ and OH⁻ → form H₂O

(iii) Net ionic equation

Cancel spectators:

\ceH+(aq)+NO3(aq)+K+(aq)+OH(aq)>K+(aq)+NO3(aq)+H2O(l)\ce{H+(aq) + \cancel{NO3-(aq)} + \cancel{K+(aq)} + OH-(aq) -> \cancel{K+(aq)} + \cancel{NO3-(aq)} + H2O(l)}

Net ionic:

\ceH+(aq)+OH(aq)>H2O(l)\boxed{\ce{H+(aq) + OH-(aq) -> H2O(l)}}

Verification:

  • Atoms: 2 H, 1 O (both sides) ✓
  • Charge: (+1) + (-1) = 0 left, 0 right ✓

Key insight: This is the SAME net ionic equation for ALL strong acid + strong base reactions!

  • HCl + NaOH → same net ionic
  • H₂SO₄ + KOH → same net ionic
  • Spectators change, but essence is always: H⁺ + OH⁻ → H₂O

Driving force: Formation of water (very stable molecule)


Reaction (c): NH₄Cl + NaOH → NaCl + NH₃ + H₂O

Type: Gas-forming reaction (weak base formation)

(i) Complete ionic equation

Identify what dissociates:

NH₄Cl(aq): Soluble ionic compound

  • NH₄⁺(aq) + Cl⁻(aq)

NaOH(aq): Strong base

  • Na⁺(aq) + OH⁻(aq)

NaCl(aq): Soluble ionic compound

  • Na⁺(aq) + Cl⁻(aq)

NH₃(g): Gas - stays together! (molecular)

H₂O(l): Liquid - stays together!

Complete ionic:

\ceNH4+(aq)+Cl(aq)+Na+(aq)+OH(aq)>Na+(aq)+Cl(aq)+NH3(g)+H2O(l)\boxed{\ce{NH4+(aq) + Cl-(aq) + Na+(aq) + OH-(aq) -> Na+(aq) + Cl-(aq) + NH3(g) + H2O(l)}}

(ii) Identify spectator ions

Spectators (appear unchanged):

  • Na⁺(aq): Both sides
  • Cl⁻(aq): Both sides

Reacting species:

  • NH₄⁺ and OH⁻ → form NH₃ and H₂O

(iii) Net ionic equation

Cancel spectators:

\ceNH4+(aq)+Cl(aq)+Na+(aq)+OH(aq)>Na+(aq)+Cl(aq)+NH3(g)+H2O(l)\ce{NH4+(aq) + \cancel{Cl-(aq)} + \cancel{Na+(aq)} + OH-(aq) -> \cancel{Na+(aq)} + \cancel{Cl-(aq)} + NH3(g) + H2O(l)}

Net ionic:

\ceNH4+(aq)+OH(aq)>NH3(g)+H2O(l)\boxed{\ce{NH4+(aq) + OH-(aq) -> NH3(g) + H2O(l)}}

Verification:

  • Atoms: 5 H, 1 N, 1 O (both sides) ✓
  • Charge: (+1) + (-1) = 0 left, 0 right ✓

Driving forces:

  1. Formation of gas (NH₃ escapes)
  2. Formation of water

Observable evidence:

  • Smell of ammonia (pungent, characteristic)
  • If heated, reaction faster and more gas evolves
  • Can test with damp red litmus paper → turns blue (NH₃ is basic)

Summary Table

| Reaction | Complete Ionic | Spectators | Net Ionic | Type | |----------|----------------|------------|-----------|------| | (a) Fe(NO₃)₃ + 3NaOH | Fe³⁺ + 3NO₃⁻ + 3Na⁺ + 3OH⁻ → Fe(OH)₃(s) + 3Na⁺ + 3NO₃⁻ | Na⁺, NO₃⁻ | Fe³⁺ + 3OH⁻ → Fe(OH)₃(s) | Precipitation | | (b) HNO₃ + KOH | H⁺ + NO₃⁻ + K⁺ + OH⁻ → K⁺ + NO₃⁻ + H₂O | K⁺, NO₃⁻ | H⁺ + OH⁻ → H₂O | Neutralization | | (c) NH₄Cl + NaOH | NH₄⁺ + Cl⁻ + Na⁺ + OH⁻ → Na⁺ + Cl⁻ + NH₃(g) + H₂O | Na⁺, Cl⁻ | NH₄⁺ + OH⁻ → NH₃(g) + H₂O | Gas formation |


Key Observations and Patterns

Reaction (a) - Precipitation Pattern

General pattern: Metal ion + OH⁻ → Metal hydroxide precipitate

Works for:

  • Fe³⁺ + 3OH⁻ → Fe(OH)₃(s) [rust-colored]
  • Al³⁺ + 3OH⁻ → Al(OH)₃(s) [white]
  • Cu²⁺ + 2OH⁻ → Cu(OH)₂(s) [blue]
  • Mg²⁺ + 2OH⁻ → Mg(OH)₂(s) [white]

Exceptions (soluble hydroxides):

  • Group 1 metals (NaOH, KOH)
  • Ba(OH)₂, Sr(OH)₂, Ca(OH)₂

Reaction (b) - Universal Neutralization

This net ionic equation is universal for:

  • ALL strong acid + strong base reactions
  • H⁺ + OH⁻ → H₂O

Examples:

  • HCl + NaOH
  • H₂SO₄ + KOH
  • HBr + LiOH
  • HI + Ca(OH)₂

All have same essence: Neutralization of H⁺ and OH⁻

Reaction (c) - Ammonium + Base Pattern

General pattern: NH₄⁺ + OH⁻ → NH₃(g) + H₂O

This is how you prepare ammonia gas in lab!

Applications:

  • Qualitative test for ammonium ions
    • Add strong base + heat
    • Smell ammonia or test with litmus
  • Industrial ammonia production (different method)

Additional Practice

Can you predict net ionic equations for these?

  1. Al₂(SO₄)₃ + 6KOH → 2Al(OH)₃ + 3K₂SO₄

    • Net ionic: Al³⁺ + 3OH⁻ → Al(OH)₃(s)
  2. HCl + NaOH → NaCl + H₂O

    • Net ionic: H⁺ + OH⁻ → H₂O
  3. CaCl₂ + 2AgNO₃ → Ca(NO₃)₂ + 2AgCl

    • Net ionic: Ag⁺ + Cl⁻ → AgCl(s)

Notice: Different molecular equations, but similar patterns in net ionic!


Key Takeaway:

Net ionic equations reveal:

  1. Actual chemical change (not spectators)
  2. Driving forces (precipitate, water, gas)
  3. Universal patterns across different reactions
  4. What's really happening at ionic level

Spectator ions are important for:

  • Electrical neutrality
  • Complete molecular equation
  • But don't participate in reaction itself