Limits at Infinity

Understanding what happens as x grows without bound

Limits at Infinity

What happens to a function as x gets really, really large? Or really, really negative?

The Notation

As x approaches positive infinity: limxf(x)=L\lim_{x \to \infty} f(x) = L

As x approaches negative infinity: limxf(x)=L\lim_{x \to -\infty} f(x) = L

These describe the end behavior of a function - where is it heading as we go far right or far left?

For Polynomials

The limit at infinity of a polynomial is determined by its leading term (highest power).

limx(3x45x2+7)=limx3x4=\lim_{x \to \infty} (3x^4 - 5x^2 + 7) = \lim_{x \to \infty} 3x^4 = \infty

Rule of Thumb:

  • Even degree, positive leading coefficient++\infty on both sides
  • Even degree, negative leading coefficient-\infty on both sides
  • Odd degree, positive leading coefficient-\infty (left), ++\infty (right)
  • Odd degree, negative leading coefficient++\infty (left), -\infty (right)

For Rational Functions

With rational functions, divide everything by the highest power of x in the denominator:

limx3x2+5x12x27\lim_{x \to \infty} \frac{3x^2 + 5x - 1}{2x^2 - 7}

Step 1: Divide every term by x2x^2

=limx3x2x2+5xx21x22x2x27x2= \lim_{x \to \infty} \frac{\frac{3x^2}{x^2} + \frac{5x}{x^2} - \frac{1}{x^2}}{\frac{2x^2}{x^2} - \frac{7}{x^2}}

Step 2: Simplify

=limx3+5x1x227x2= \lim_{x \to \infty} \frac{3 + \frac{5}{x} - \frac{1}{x^2}}{2 - \frac{7}{x^2}}

Step 3: As xx \to \infty, terms like 1x0\frac{1}{x} \to 0

=3+0020=32= \frac{3 + 0 - 0}{2 - 0} = \frac{3}{2}

The Key Insight

limx1x=0\lim_{x \to \infty} \frac{1}{x} = 0 limx1xn=0 for any n>0\lim_{x \to \infty} \frac{1}{x^n} = 0 \text{ for any } n > 0

Big numbers make fractions tiny!

Horizontal Asymptotes

If limxf(x)=L\lim_{x \to \infty} f(x) = L, then y = L is a horizontal asymptote.

The graph approaches this horizontal line as x gets large.

Three Cases for Rational Functions

For anxn+...bmxm+...\frac{a_nx^n + ...}{b_mx^m + ...}:

  1. n<mn < m (denominator degree higher): Limit = 0
  2. n=mn = m (same degree): Limit = anbm\frac{a_n}{b_m} (ratio of leading coefficients)
  3. n>mn > m (numerator degree higher): Limit = ±\pm\infty

Example

limx5x3+2xx34\lim_{x \to \infty} \frac{5x^3 + 2x}{x^3 - 4}

Same degree (both 3), so:

Limit=51=5\text{Limit} = \frac{5}{1} = 5

Horizontal asymptote at y = 5!

📚 Practice Problems

1Problem 1medium

Question:

Evaluate limx4x23x+12x2+5\lim_{x \to \infty} \frac{4x^2 - 3x + 1}{2x^2 + 5}

💡 Show Solution

Step 1: Identify degrees

Numerator: degree 2 Denominator: degree 2

Same degree! The limit will be the ratio of leading coefficients.

Step 2: Find leading coefficients

Leading coefficient of numerator: 4 Leading coefficient of denominator: 2

Step 3: Take the ratio

limx4x23x+12x2+5=42=2\lim_{x \to \infty} \frac{4x^2 - 3x + 1}{2x^2 + 5} = \frac{4}{2} = 2

Answer: 2

Verification by division: Divide all terms by x2x^2:

limx43x+1x22+5x2=40+02+0=42=2\lim_{x \to \infty} \frac{4 - \frac{3}{x} + \frac{1}{x^2}}{2 + \frac{5}{x^2}} = \frac{4 - 0 + 0}{2 + 0} = \frac{4}{2} = 2

2Problem 2medium

Question:

Evaluate the following limits:

a) limx3x25x+12x2+x4\lim_{x \to \infty} \frac{3x^2 - 5x + 1}{2x^2 + x - 4} b) limx5x3+2xx21\lim_{x \to \infty} \frac{5x^3 + 2x}{x^2 - 1} c) limx4x72x2+3\lim_{x \to -\infty} \frac{4x - 7}{2x^2 + 3}

💡 Show Solution

Solution:

Part (a): Both numerator and denominator have degree 2.

Divide numerator and denominator by highest power (x2x^2):

limx35x+1x22+1x4x2\lim_{x \to \infty} \frac{3 - \frac{5}{x} + \frac{1}{x^2}}{2 + \frac{1}{x} - \frac{4}{x^2}}

As xx \to \infty, terms with xx in denominator approach 0:

=30+02+00=32= \frac{3 - 0 + 0}{2 + 0 - 0} = \frac{3}{2}

Part (b): Numerator degree (3) > denominator degree (2).

Divide by x3x^3:

limx5+2x21x1x3\lim_{x \to \infty} \frac{5 + \frac{2}{x^2}}{\frac{1}{x} - \frac{1}{x^3}}

Numerator approaches 5, denominator approaches 0 from positive side:

== \infty

Part (c): Numerator degree (1) < denominator degree (2).

Divide by x2x^2:

limx4x7x22+3x2\lim_{x \to -\infty} \frac{\frac{4}{x} - \frac{7}{x^2}}{2 + \frac{3}{x^2}}

Numerator approaches 0, denominator approaches 2:

=02=0= \frac{0}{2} = 0

3Problem 3medium

Question:

Evaluate the following limits:

a) limx3x25x+12x2+x4\lim_{x \to \infty} \frac{3x^2 - 5x + 1}{2x^2 + x - 4} b) limx5x3+2xx21\lim_{x \to \infty} \frac{5x^3 + 2x}{x^2 - 1} c) limx4x72x2+3\lim_{x \to -\infty} \frac{4x - 7}{2x^2 + 3}

💡 Show Solution

Solution:

Part (a): Both numerator and denominator have degree 2.

Divide numerator and denominator by highest power (x2x^2):

limx35x+1x22+1x4x2\lim_{x \to \infty} \frac{3 - \frac{5}{x} + \frac{1}{x^2}}{2 + \frac{1}{x} - \frac{4}{x^2}}

As xx \to \infty, terms with xx in denominator approach 0:

=30+02+00=32= \frac{3 - 0 + 0}{2 + 0 - 0} = \frac{3}{2}

Part (b): Numerator degree (3) > denominator degree (2).

Divide by x3x^3:

limx5+2x21x1x3\lim_{x \to \infty} \frac{5 + \frac{2}{x^2}}{\frac{1}{x} - \frac{1}{x^3}}

Numerator approaches 5, denominator approaches 0 from positive side:

== \infty

Part (c): Numerator degree (1) < denominator degree (2).

Divide by x2x^2:

limx4x7x22+3x2\lim_{x \to -\infty} \frac{\frac{4}{x} - \frac{7}{x^2}}{2 + \frac{3}{x^2}}

Numerator approaches 0, denominator approaches 2:

=02=0= \frac{0}{2} = 0

4Problem 4medium

Question:

Evaluate limx7x3x2+1\lim_{x \to -\infty} \frac{7x}{3x^2 + 1}

💡 Show Solution

Step 1: Identify degrees

Numerator: degree 1 Denominator: degree 2

Denominator has higher degree!

Step 2: Apply the rule

When denominator degree > numerator degree, the limit is 0.

limx7x3x2+1=0\lim_{x \to -\infty} \frac{7x}{3x^2 + 1} = 0

Verification: Divide all terms by x2x^2:

limx7xx23x2x2+1x2=limx7x3+1x2\lim_{x \to -\infty} \frac{\frac{7x}{x^2}}{\frac{3x^2}{x^2} + \frac{1}{x^2}} = \lim_{x \to -\infty} \frac{\frac{7}{x}}{3 + \frac{1}{x^2}}

As xx \to -\infty: 7x0\frac{7}{x} \to 0 and 1x20\frac{1}{x^2} \to 0

=03+0=0= \frac{0}{3 + 0} = 0

Answer: 0