L'Hôpital's Rule

Evaluating indeterminate forms using derivatives

🔄 L'Hôpital's Rule

What is L'Hôpital's Rule?

L'Hôpital's Rule (pronounced "low-pea-tahl") is a powerful technique for evaluating limits that result in indeterminate forms like 00\frac{0}{0} or \frac{\infty}{\infty}.

💡 Key Idea: When direct substitution gives 00\frac{0}{0} or \frac{\infty}{\infty}, take the derivative of the top and bottom separately, then try again!


The Rule (Formal Statement)

Suppose limxaf(x)=0\lim_{x \to a} f(x) = 0 and limxag(x)=0\lim_{x \to a} g(x) = 0 (or both approach ±\pm\infty).

If limxaf(x)g(x)\lim_{x \to a} \frac{f'(x)}{g'(x)} exists, then:

limxaf(x)g(x)=limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}

Important: This works for xax \to a, xa+x \to a^+, xax \to a^-, xx \to \infty, or xx \to -\infty!


When to Use L'Hôpital's Rule

Indeterminate Forms That Work

L'Hôpital's Rule applies ONLY to these forms:

  1. 00\frac{0}{0} ← most common
  2. \frac{\infty}{\infty} ← also very common

Forms That DON'T Work Directly

These are NOT indeterminate forms for L'Hôpital's Rule:

  • 10\frac{1}{0} (this is ±\pm\infty, not indeterminate)
  • 0\frac{0}{\infty} (this equals 0)
  • 0\frac{\infty}{0} (this is ±\pm\infty)

But wait! We can sometimes convert other indeterminate forms:

  • 00 \cdot \infty → rewrite as 00\frac{0}{0} or \frac{\infty}{\infty}
  • \infty - \infty → combine and rewrite as a fraction
  • 000^0, 11^\infty, 0\infty^0 → use logarithms first!

How to Apply L'Hôpital's Rule

Step-by-Step Process

Step 1: Try direct substitution first

Step 2: Check if you get 00\frac{0}{0} or \frac{\infty}{\infty}

  • If YES → L'Hôpital's Rule applies!
  • If NO → use another method

Step 3: Take derivatives of numerator and denominator separately limxaf(x)g(x)=limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}

Step 4: Evaluate the new limit

  • If you get a number, you're done!
  • If you get 00\frac{0}{0} or \frac{\infty}{\infty} again, apply L'Hôpital's Rule again!
  • If you get something else, stop and use a different method

Example 1: Basic Application

Evaluate limx0sinxx\lim_{x \to 0} \frac{\sin x}{x}

Step 1: Direct substitution

sin00=00\frac{\sin 0}{0} = \frac{0}{0} ← indeterminate form!


Step 2: Apply L'Hôpital's Rule

Take derivatives of top and bottom separately:

limx0sinxx=limx0(sinx)(x)\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{(\sin x)'}{(x)'}

=limx0cosx1= \lim_{x \to 0} \frac{\cos x}{1}


Step 3: Evaluate

=cos01=11=1= \frac{\cos 0}{1} = \frac{1}{1} = 1

Answer: limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1


Example 2: Apply Twice

Evaluate limx01cosxx2\lim_{x \to 0} \frac{1 - \cos x}{x^2}

First attempt: Direct substitution

1cos002=110=00\frac{1 - \cos 0}{0^2} = \frac{1-1}{0} = \frac{0}{0} ← use L'Hôpital's!


Apply L'Hôpital's Rule (first time)

limx01cosxx2=limx0(1cosx)(x2)\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{(1-\cos x)'}{(x^2)'}

=limx0sinx2x= \lim_{x \to 0} \frac{\sin x}{2x}


Check: Direct substitution again

sin02(0)=00\frac{\sin 0}{2(0)} = \frac{0}{0} ← still indeterminate!


Apply L'Hôpital's Rule (second time)

limx0sinx2x=limx0(sinx)(2x)\lim_{x \to 0} \frac{\sin x}{2x} = \lim_{x \to 0} \frac{(\sin x)'}{(2x)'}

=limx0cosx2= \lim_{x \to 0} \frac{\cos x}{2}

=cos02=12= \frac{\cos 0}{2} = \frac{1}{2}

Answer: limx01cosxx2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}


Example 3: Infinity Form

Evaluate limxlnxx\lim_{x \to \infty} \frac{\ln x}{x}

Step 1: Check the form

As xx \to \infty: lnx\ln x \to \infty and xx \to \infty

Form: \frac{\infty}{\infty} ← L'Hôpital's applies!


Step 2: Apply L'Hôpital's Rule

limxlnxx=limx(lnx)(x)\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{(\ln x)'}{(x)'}

=limx1/x1= \lim_{x \to \infty} \frac{1/x}{1}

=limx1x=0= \lim_{x \to \infty} \frac{1}{x} = 0

Answer: limxlnxx=0\lim_{x \to \infty} \frac{\ln x}{x} = 0

Interpretation: Logarithms grow slower than linear functions!


Converting Other Indeterminate Forms

Form: 00 \cdot \infty

Strategy: Rewrite as a fraction

limx0+xlnx\lim_{x \to 0^+} x \ln x

This is 0()0 \cdot (-\infty) form.

Rewrite: limx0+lnx1/x\lim_{x \to 0^+} \frac{\ln x}{1/x}

Now it's \frac{-\infty}{\infty} form!

Apply L'Hôpital's: =limx0+1/x1/x2=limx0+x2x=limx0+(x)=0= \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} \frac{x^2}{-x} = \lim_{x \to 0^+} (-x) = 0

Form: \infty - \infty

Strategy: Combine into a single fraction

limx0+(1x1sinx)\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{\sin x}\right)

This is \infty - \infty form.

Combine: limx0+sinxxxsinx\lim_{x \to 0^+} \frac{\sin x - x}{x \sin x}

Now it's 00\frac{0}{0} form → use L'Hôpital's!

Form: 11^\infty, 000^0, 0\infty^0

Strategy: Take natural log first, use L'Hôpital's, then exponentiate

limx0+xx\lim_{x \to 0^+} x^x

This is 000^0 form.

Let y=xxy = x^x, then lny=xlnx\ln y = x \ln x

Find limx0+lny=limx0+xlnx=0\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} x \ln x = 0 (from earlier)

Therefore: limx0+y=e0=1\lim_{x \to 0^+} y = e^0 = 1


Example: Exponential Form

Evaluate limx(1+1x)x\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x

This is 11^\infty form.

Step 1: Take natural log

Let y=(1+1x)xy = \left(1 + \frac{1}{x}\right)^x

lny=xln(1+1x)\ln y = x \ln\left(1 + \frac{1}{x}\right)


Step 2: Evaluate limit of lny\ln y

limxlny=limxxln(1+1x)\lim_{x \to \infty} \ln y = \lim_{x \to \infty} x \ln\left(1 + \frac{1}{x}\right)

This is 0\infty \cdot 0 form.

Rewrite: limxln(1+1/x)1/x\lim_{x \to \infty} \frac{\ln(1 + 1/x)}{1/x} (now 00\frac{0}{0} form)


Step 3: Apply L'Hôpital's

=limx11+1/x(1/x2)1/x2= \lim_{x \to \infty} \frac{\frac{1}{1+1/x} \cdot (-1/x^2)}{-1/x^2}

=limx11+1/x=1= \lim_{x \to \infty} \frac{1}{1+1/x} = 1


Step 4: Exponentiate

limxy=elimlny=e1=e\lim_{x \to \infty} y = e^{\lim \ln y} = e^1 = e

Answer: limx(1+1x)x=e\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e

This is actually the definition of ee! 🎉


⚠️ Common Mistakes

Mistake 1: Using When It Doesn't Apply

WRONG: Using L'Hôpital's for limx0x1=0\lim_{x \to 0} \frac{x}{1} = 0

This is NOT indeterminate! Just substitute.

Mistake 2: Taking Derivative of the Whole Fraction

WRONG: ddx[f(x)g(x)]\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] (using quotient rule)

RIGHT: f(x)g(x)\frac{f'(x)}{g'(x)} (derivatives separately!)

L'Hôpital's says take derivatives of top and bottom separately, not the derivative of the quotient!

Mistake 3: Not Checking the Form

Always verify you have 00\frac{0}{0} or \frac{\infty}{\infty} before applying!

Mistake 4: Applying Infinitely

If L'Hôpital's keeps giving 00\frac{0}{0}, you might be in a loop. Try a different method!

Mistake 5: Forgetting to Simplify

Sometimes simplifying algebraically is easier than using L'Hôpital's multiple times.


When NOT to Use L'Hôpital's Rule

Alternative 1: Algebra is Easier

limx2x24x2=limx2(x2)(x+2)x2=limx2(x+2)=4\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x-2)(x+2)}{x-2} = \lim_{x \to 2} (x+2) = 4

Yes, L'Hôpital's would work, but factoring is simpler!

Alternative 2: Standard Limits

You should know: limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

Don't need L'Hôpital's every time!

Alternative 3: The Form Doesn't Match

If you get 50\frac{5}{0}, that's \infty (or -\infty), not indeterminate!


Quick Reference Chart

| Original Form | What to Do | Result Form | |---------------|------------|-------------| | 00\frac{0}{0} | L'Hôpital's directly | Apply rule | | \frac{\infty}{\infty} | L'Hôpital's directly | Apply rule | | 00 \cdot \infty | Rewrite as fraction | 00\frac{0}{0} or \frac{\infty}{\infty} | | \infty - \infty | Combine fractions | 00\frac{0}{0} or \frac{\infty}{\infty} | | 11^\infty, 000^0, 0\infty^0 | Take ln first | 00 \cdot \infty → fraction |


Growth Rates Using L'Hôpital's

L'Hôpital's Rule helps us compare growth rates:

Logarithms grow slower than polynomials: limxlnxxp=0 for any p>0\lim_{x \to \infty} \frac{\ln x}{x^p} = 0 \text{ for any } p > 0

Polynomials grow slower than exponentials: limxxnex=0 for any n\lim_{x \to \infty} \frac{x^n}{e^x} = 0 \text{ for any } n

Order from slowest to fastest: lnxxpexx!\ln x \ll x^p \ll e^x \ll x!


Historical Note

Named after Guillaume de l'Hôpital (1661-1704), though it was actually discovered by his teacher Johann Bernoulli!

L'Hôpital paid Bernoulli to teach him calculus and share his discoveries. The rule appeared in L'Hôpital's book, the first calculus textbook ever published!


📝 Practice Strategy

  1. Always try direct substitution first - might not be indeterminate!
  2. Check the form - only 00\frac{0}{0} and \frac{\infty}{\infty} work directly
  3. Convert other forms to one of the two usable forms
  4. Take derivatives separately - not the derivative of the quotient!
  5. Simplify when possible - sometimes algebra is faster
  6. Be ready to apply multiple times - but watch for loops
  7. For exponential forms, take ln first, then exponentiate at the end

📚 Practice Problems

1Problem 1medium

Question:

Evaluate limx0ex1xx2\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} using L'Hôpital's Rule.

💡 Show Solution

Step 1: Direct substitution

e01002=1100=00\frac{e^0 - 1 - 0}{0^2} = \frac{1 - 1 - 0}{0} = \frac{0}{0}

Indeterminate form! ✓


Step 2: Apply L'Hôpital's Rule (first time)

Take derivatives of numerator and denominator separately:

Numerator: (ex1x)=ex1(e^x - 1 - x)' = e^x - 1

Denominator: (x2)=2x(x^2)' = 2x

limx0ex1xx2=limx0ex12x\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x}


Step 3: Check the new limit

e012(0)=110=00\frac{e^0 - 1}{2(0)} = \frac{1-1}{0} = \frac{0}{0}

Still indeterminate! Apply L'Hôpital's again.


Step 4: Apply L'Hôpital's Rule (second time)

Numerator: (ex1)=ex(e^x - 1)' = e^x

Denominator: (2x)=2(2x)' = 2

limx0ex12x=limx0ex2\lim_{x \to 0} \frac{e^x - 1}{2x} = \lim_{x \to 0} \frac{e^x}{2}


Step 5: Evaluate

=e02=12= \frac{e^0}{2} = \frac{1}{2}

Answer: limx0ex1xx2=12\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2}

2Problem 2medium

Question:

Evaluate limxx2ex\lim_{x \to \infty} \frac{x^2}{e^x} using L'Hôpital's Rule. What does this tell you about growth rates?

💡 Show Solution

Step 1: Check the form

As xx \to \infty: numerator x2x^2 \to \infty and denominator exe^x \to \infty

Form: \frac{\infty}{\infty} ← L'Hôpital's applies!


Step 2: Apply L'Hôpital's Rule (first time)

limxx2ex=limx(x2)(ex)\lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{(x^2)'}{(e^x)'}

=limx2xex= \lim_{x \to \infty} \frac{2x}{e^x}


Step 3: Check the form again

As xx \to \infty: 2x2x \to \infty and exe^x \to \infty

Still \frac{\infty}{\infty} form!


Step 4: Apply L'Hôpital's Rule (second time)

limx2xex=limx(2x)(ex)\lim_{x \to \infty} \frac{2x}{e^x} = \lim_{x \to \infty} \frac{(2x)'}{(e^x)'}

=limx2ex= \lim_{x \to \infty} \frac{2}{e^x}


Step 5: Evaluate

=2=0= \frac{2}{\infty} = 0

Answer: limxx2ex=0\lim_{x \to \infty} \frac{x^2}{e^x} = 0


Interpretation:

Even though x2x^2 grows to infinity, exe^x grows so much faster that the ratio goes to 0.

Growth rate conclusion: Exponential functions grow faster than any polynomial!

In general: limxxnex=0\lim_{x \to \infty} \frac{x^n}{e^x} = 0 for any positive integer nn.

3Problem 3expert

Question:

Evaluate limx0+(sinx)x\lim_{x \to 0^+} (\sin x)^x using L'Hôpital's Rule.

💡 Show Solution

Step 1: Identify the form

As x0+x \to 0^+: sinx0+\sin x \to 0^+

So (sinx)x(\sin x)^x is the form 000^0 (indeterminate!)

Can't use L'Hôpital's directly on this form.


Step 2: Use logarithms

Let y=(sinx)xy = (\sin x)^x

Take natural log of both sides: lny=ln[(sinx)x]=xln(sinx)\ln y = \ln[(\sin x)^x] = x \ln(\sin x)


Step 3: Find limit of lny\ln y

limx0+lny=limx0+xln(sinx)\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} x \ln(\sin x)

This is 0()0 \cdot (-\infty) form.


Step 4: Rewrite as a fraction

limx0+xln(sinx)=limx0+ln(sinx)1/x\lim_{x \to 0^+} x \ln(\sin x) = \lim_{x \to 0^+} \frac{\ln(\sin x)}{1/x}

This is \frac{-\infty}{\infty} form → can use L'Hôpital's!


Step 5: Apply L'Hôpital's Rule

Numerator: (ln(sinx))=1sinxcosx=cosxsinx=cotx(\ln(\sin x))' = \frac{1}{\sin x} \cdot \cos x = \frac{\cos x}{\sin x} = \cot x

Denominator: (1/x)=1/x2(1/x)' = -1/x^2

limx0+ln(sinx)1/x=limx0+cotx1/x2\lim_{x \to 0^+} \frac{\ln(\sin x)}{1/x} = \lim_{x \to 0^+} \frac{\cot x}{-1/x^2}

=limx0+cosxsinx(x2)= \lim_{x \to 0^+} \frac{\cos x}{\sin x} \cdot (-x^2)

=limx0+x2cosxsinx= \lim_{x \to 0^+} \frac{-x^2 \cos x}{\sin x}


Step 6: Simplify and apply L'Hôpital's again

=limx0+x2cosxsinx=limx0+(xxcosxsinx)= \lim_{x \to 0^+} \frac{-x^2 \cos x}{\sin x} = \lim_{x \to 0^+} \left(-x \cdot \frac{x\cos x}{\sin x}\right)

Since limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1, we have limx0xsinx=1\lim_{x \to 0} \frac{x}{\sin x} = 1

=limx0+(x)cosx1=01=0= \lim_{x \to 0^+} (-x) \cdot \cos x \cdot 1 = 0 \cdot 1 = 0


Step 7: Exponentiate to find yy

limx0+lny=0\lim_{x \to 0^+} \ln y = 0

Therefore: limx0+y=e0=1\lim_{x \to 0^+} y = e^0 = 1

Answer: limx0+(sinx)x=1\lim_{x \to 0^+} (\sin x)^x = 1