L'Hรดpital's Rule

Evaluating indeterminate forms using derivatives

๐Ÿ”„ L'Hรดpital's Rule

What is L'Hรดpital's Rule?

L'Hรดpital's Rule (pronounced "low-pea-tahl") is a powerful technique for evaluating limits that result in indeterminate forms like 00\frac{0}{0} or โˆžโˆž\frac{\infty}{\infty}.

๐Ÿ’ก Key Idea: When direct substitution gives 00\frac{0}{0} or โˆžโˆž\frac{\infty}{\infty}, take the derivative of the top and bottom separately, then try again!


The Rule (Formal Statement)

Suppose limโกxโ†’af(x)=0\lim_{x \to a} f(x) = 0 and limโกxโ†’ag(x)=0\lim_{x \to a} g(x) = 0 (or both approach ยฑโˆž\pm\infty).

If limโกxโ†’afโ€ฒ(x)gโ€ฒ(x)\lim_{x \to a} \frac{f'(x)}{g'(x)} exists, then:

limโกxโ†’af(x)g(x)=limโกxโ†’afโ€ฒ(x)gโ€ฒ(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}

Important: This works for xโ†’ax \to a, xโ†’a+x \to a^+, xโ†’aโˆ’x \to a^-, xโ†’โˆžx \to \infty, or xโ†’โˆ’โˆžx \to -\infty!


When to Use L'Hรดpital's Rule

Indeterminate Forms That Work

L'Hรดpital's Rule applies ONLY to these forms:

  1. 00\frac{0}{0} โ† most common
  2. โˆžโˆž\frac{\infty}{\infty} โ† also very common

Forms That DON'T Work Directly

These are NOT indeterminate forms for L'Hรดpital's Rule:

  • 10\frac{1}{0} (this is ยฑโˆž\pm\infty, not indeterminate)
  • 0โˆž\frac{0}{\infty} (this equals 0)
  • โˆž0\frac{\infty}{0} (this is ยฑโˆž\pm\infty)

But wait! We can sometimes convert other indeterminate forms:

  • 0โ‹…โˆž0 \cdot \infty โ†’ rewrite as 00\frac{0}{0} or โˆžโˆž\frac{\infty}{\infty}
  • โˆžโˆ’โˆž\infty - \infty โ†’ combine and rewrite as a fraction
  • 000^0, 1โˆž1^\infty, โˆž0\infty^0 โ†’ use logarithms first!

How to Apply L'Hรดpital's Rule

Step-by-Step Process

Step 1: Try direct substitution first

Step 2: Check if you get 00\frac{0}{0} or โˆžโˆž\frac{\infty}{\infty}

  • If YES โ†’ L'Hรดpital's Rule applies!
  • If NO โ†’ use another method

Step 3: Take derivatives of numerator and denominator separately limโกxโ†’af(x)g(x)=limโกxโ†’afโ€ฒ(x)gโ€ฒ(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}

Step 4: Evaluate the new limit

  • If you get a number, you're done!
  • If you get 00\frac{0}{0} or โˆžโˆž\frac{\infty}{\infty} again, apply L'Hรดpital's Rule again!
  • If you get something else, stop and use a different method

Example 1: Basic Application

Evaluate limโกxโ†’0sinโกxx\lim_{x \to 0} \frac{\sin x}{x}

Step 1: Direct substitution

sinโก00=00\frac{\sin 0}{0} = \frac{0}{0} โ† indeterminate form!


Step 2: Apply L'Hรดpital's Rule

Take derivatives of top and bottom separately:

limโกxโ†’0sinโกxx=limโกxโ†’0(sinโกx)โ€ฒ(x)โ€ฒ\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{(\sin x)'}{(x)'}

=limโกxโ†’0cosโกx1= \lim_{x \to 0} \frac{\cos x}{1}


Step 3: Evaluate

=cosโก01=11=1= \frac{\cos 0}{1} = \frac{1}{1} = 1

Answer: limโกxโ†’0sinโกxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1


Example 2: Apply Twice

Evaluate limโกxโ†’01โˆ’cosโกxx2\lim_{x \to 0} \frac{1 - \cos x}{x^2}

First attempt: Direct substitution

1โˆ’cosโก002=1โˆ’10=00\frac{1 - \cos 0}{0^2} = \frac{1-1}{0} = \frac{0}{0} โ† use L'Hรดpital's!


Apply L'Hรดpital's Rule (first time)

limโกxโ†’01โˆ’cosโกxx2=limโกxโ†’0(1โˆ’cosโกx)โ€ฒ(x2)โ€ฒ\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{(1-\cos x)'}{(x^2)'}

=limโกxโ†’0sinโกx2x= \lim_{x \to 0} \frac{\sin x}{2x}


Check: Direct substitution again

sinโก02(0)=00\frac{\sin 0}{2(0)} = \frac{0}{0} โ† still indeterminate!


Apply L'Hรดpital's Rule (second time)

limโกxโ†’0sinโกx2x=limโกxโ†’0(sinโกx)โ€ฒ(2x)โ€ฒ\lim_{x \to 0} \frac{\sin x}{2x} = \lim_{x \to 0} \frac{(\sin x)'}{(2x)'}

=limโกxโ†’0cosโกx2= \lim_{x \to 0} \frac{\cos x}{2}

=cosโก02=12= \frac{\cos 0}{2} = \frac{1}{2}

Answer: limโกxโ†’01โˆ’cosโกxx2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}


Example 3: Infinity Form

Evaluate limโกxโ†’โˆžlnโกxx\lim_{x \to \infty} \frac{\ln x}{x}

Step 1: Check the form

As xโ†’โˆžx \to \infty: lnโกxโ†’โˆž\ln x \to \infty and xโ†’โˆžx \to \infty

Form: โˆžโˆž\frac{\infty}{\infty} โ† L'Hรดpital's applies!


Step 2: Apply L'Hรดpital's Rule

limโกxโ†’โˆžlnโกxx=limโกxโ†’โˆž(lnโกx)โ€ฒ(x)โ€ฒ\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{(\ln x)'}{(x)'}

=limโกxโ†’โˆž1/x1= \lim_{x \to \infty} \frac{1/x}{1}

=limโกxโ†’โˆž1x=0= \lim_{x \to \infty} \frac{1}{x} = 0

Answer: limโกxโ†’โˆžlnโกxx=0\lim_{x \to \infty} \frac{\ln x}{x} = 0

Interpretation: Logarithms grow slower than linear functions!


Converting Other Indeterminate Forms

Form: 0โ‹…โˆž0 \cdot \infty

Strategy: Rewrite as a fraction

limโกxโ†’0+xlnโกx\lim_{x \to 0^+} x \ln x

This is 0โ‹…(โˆ’โˆž)0 \cdot (-\infty) form.

Rewrite: limโกxโ†’0+lnโกx1/x\lim_{x \to 0^+} \frac{\ln x}{1/x}

Now it's โˆ’โˆžโˆž\frac{-\infty}{\infty} form!

Apply L'Hรดpital's: =limโกxโ†’0+1/xโˆ’1/x2=limโกxโ†’0+x2โˆ’x=limโกxโ†’0+(โˆ’x)=0= \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} \frac{x^2}{-x} = \lim_{x \to 0^+} (-x) = 0

Form: โˆžโˆ’โˆž\infty - \infty

Strategy: Combine into a single fraction

limโกxโ†’0+(1xโˆ’1sinโกx)\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{\sin x}\right)

This is โˆžโˆ’โˆž\infty - \infty form.

Combine: limโกxโ†’0+sinโกxโˆ’xxsinโกx\lim_{x \to 0^+} \frac{\sin x - x}{x \sin x}

Now it's 00\frac{0}{0} form โ†’ use L'Hรดpital's!

Form: 1โˆž1^\infty, 000^0, โˆž0\infty^0

Strategy: Take natural log first, use L'Hรดpital's, then exponentiate

limโกxโ†’0+xx\lim_{x \to 0^+} x^x

This is 000^0 form.

Let y=xxy = x^x, then lnโกy=xlnโกx\ln y = x \ln x

Find limโกxโ†’0+lnโกy=limโกxโ†’0+xlnโกx=0\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} x \ln x = 0 (from earlier)

Therefore: limโกxโ†’0+y=e0=1\lim_{x \to 0^+} y = e^0 = 1


Example: Exponential Form

Evaluate limโกxโ†’โˆž(1+1x)x\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x

This is 1โˆž1^\infty form.

Step 1: Take natural log

Let y=(1+1x)xy = \left(1 + \frac{1}{x}\right)^x

lnโกy=xlnโก(1+1x)\ln y = x \ln\left(1 + \frac{1}{x}\right)


Step 2: Evaluate limit of lnโกy\ln y

limโกxโ†’โˆžlnโกy=limโกxโ†’โˆžxlnโก(1+1x)\lim_{x \to \infty} \ln y = \lim_{x \to \infty} x \ln\left(1 + \frac{1}{x}\right)

This is โˆžโ‹…0\infty \cdot 0 form.

Rewrite: limโกxโ†’โˆžlnโก(1+1/x)1/x\lim_{x \to \infty} \frac{\ln(1 + 1/x)}{1/x} (now 00\frac{0}{0} form)


Step 3: Apply L'Hรดpital's

=limโกxโ†’โˆž11+1/xโ‹…(โˆ’1/x2)โˆ’1/x2= \lim_{x \to \infty} \frac{\frac{1}{1+1/x} \cdot (-1/x^2)}{-1/x^2}

=limโกxโ†’โˆž11+1/x=1= \lim_{x \to \infty} \frac{1}{1+1/x} = 1


Step 4: Exponentiate

limโกxโ†’โˆžy=elimโกlnโกy=e1=e\lim_{x \to \infty} y = e^{\lim \ln y} = e^1 = e

Answer: limโกxโ†’โˆž(1+1x)x=e\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e

This is actually the definition of ee! ๐ŸŽ‰


โš ๏ธ Common Mistakes

Mistake 1: Using When It Doesn't Apply

WRONG: Using L'Hรดpital's for limโกxโ†’0x1=0\lim_{x \to 0} \frac{x}{1} = 0

This is NOT indeterminate! Just substitute.

Mistake 2: Taking Derivative of the Whole Fraction

WRONG: ddx[f(x)g(x)]\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] (using quotient rule)

RIGHT: fโ€ฒ(x)gโ€ฒ(x)\frac{f'(x)}{g'(x)} (derivatives separately!)

L'Hรดpital's says take derivatives of top and bottom separately, not the derivative of the quotient!

Mistake 3: Not Checking the Form

Always verify you have 00\frac{0}{0} or โˆžโˆž\frac{\infty}{\infty} before applying!

Mistake 4: Applying Infinitely

If L'Hรดpital's keeps giving 00\frac{0}{0}, you might be in a loop. Try a different method!

Mistake 5: Forgetting to Simplify

Sometimes simplifying algebraically is easier than using L'Hรดpital's multiple times.


When NOT to Use L'Hรดpital's Rule

Alternative 1: Algebra is Easier

limโกxโ†’2x2โˆ’4xโˆ’2=limโกxโ†’2(xโˆ’2)(x+2)xโˆ’2=limโกxโ†’2(x+2)=4\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x-2)(x+2)}{x-2} = \lim_{x \to 2} (x+2) = 4

Yes, L'Hรดpital's would work, but factoring is simpler!

Alternative 2: Standard Limits

You should know: limโกxโ†’0sinโกxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

Don't need L'Hรดpital's every time!

Alternative 3: The Form Doesn't Match

If you get 50\frac{5}{0}, that's โˆž\infty (or โˆ’โˆž-\infty), not indeterminate!


Quick Reference Chart

| Original Form | What to Do | Result Form | |---------------|------------|-------------| | 00\frac{0}{0} | L'Hรดpital's directly | Apply rule | | โˆžโˆž\frac{\infty}{\infty} | L'Hรดpital's directly | Apply rule | | 0โ‹…โˆž0 \cdot \infty | Rewrite as fraction | 00\frac{0}{0} or โˆžโˆž\frac{\infty}{\infty} | | โˆžโˆ’โˆž\infty - \infty | Combine fractions | 00\frac{0}{0} or โˆžโˆž\frac{\infty}{\infty} | | 1โˆž1^\infty, 000^0, โˆž0\infty^0 | Take ln first | 0โ‹…โˆž0 \cdot \infty โ†’ fraction |


Growth Rates Using L'Hรดpital's

L'Hรดpital's Rule helps us compare growth rates:

Logarithms grow slower than polynomials: limโกxโ†’โˆžlnโกxxp=0ย forย anyย p>0\lim_{x \to \infty} \frac{\ln x}{x^p} = 0 \text{ for any } p > 0

Polynomials grow slower than exponentials: limโกxโ†’โˆžxnex=0ย forย anyย n\lim_{x \to \infty} \frac{x^n}{e^x} = 0 \text{ for any } n

Order from slowest to fastest: lnโกxโ‰ชxpโ‰ชexโ‰ชx!\ln x \ll x^p \ll e^x \ll x!


Historical Note

Named after Guillaume de l'Hรดpital (1661-1704), though it was actually discovered by his teacher Johann Bernoulli!

L'Hรดpital paid Bernoulli to teach him calculus and share his discoveries. The rule appeared in L'Hรดpital's book, the first calculus textbook ever published!


๐Ÿ“ Practice Strategy

  1. Always try direct substitution first - might not be indeterminate!
  2. Check the form - only 00\frac{0}{0} and โˆžโˆž\frac{\infty}{\infty} work directly
  3. Convert other forms to one of the two usable forms
  4. Take derivatives separately - not the derivative of the quotient!
  5. Simplify when possible - sometimes algebra is faster
  6. Be ready to apply multiple times - but watch for loops
  7. For exponential forms, take ln first, then exponentiate at the end

๐Ÿ“š Practice Problems

1Problem 1medium

โ“ Question:

Evaluate limโกxโ†’0exโˆ’1โˆ’xx2\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} using L'Hรดpital's Rule.

๐Ÿ’ก Show Solution

Step 1: Direct substitution

e0โˆ’1โˆ’002=1โˆ’1โˆ’00=00\frac{e^0 - 1 - 0}{0^2} = \frac{1 - 1 - 0}{0} = \frac{0}{0}

Indeterminate form! โœ“


Step 2: Apply L'Hรดpital's Rule (first time)

Take derivatives of numerator and denominator separately:

Numerator: (exโˆ’1โˆ’x)โ€ฒ=exโˆ’1(e^x - 1 - x)' = e^x - 1

Denominator: (x2)โ€ฒ=2x(x^2)' = 2x

limโกxโ†’0exโˆ’1โˆ’xx2=limโกxโ†’0exโˆ’12x\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x}


Step 3: Check the new limit

e0โˆ’12(0)=1โˆ’10=00\frac{e^0 - 1}{2(0)} = \frac{1-1}{0} = \frac{0}{0}

Still indeterminate! Apply L'Hรดpital's again.


Step 4: Apply L'Hรดpital's Rule (second time)

Numerator: (exโˆ’1)โ€ฒ=ex(e^x - 1)' = e^x

Denominator: (2x)โ€ฒ=2(2x)' = 2

limโกxโ†’0exโˆ’12x=limโกxโ†’0ex2\lim_{x \to 0} \frac{e^x - 1}{2x} = \lim_{x \to 0} \frac{e^x}{2}


Step 5: Evaluate

=e02=12= \frac{e^0}{2} = \frac{1}{2}

Answer: limโกxโ†’0exโˆ’1โˆ’xx2=12\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2}

2Problem 2medium

โ“ Question:

Evaluate limโกxโ†’โˆžx2ex\lim_{x \to \infty} \frac{x^2}{e^x} using L'Hรดpital's Rule. What does this tell you about growth rates?

๐Ÿ’ก Show Solution

Step 1: Check the form

As xโ†’โˆžx \to \infty: numerator x2โ†’โˆžx^2 \to \infty and denominator exโ†’โˆže^x \to \infty

Form: โˆžโˆž\frac{\infty}{\infty} โ† L'Hรดpital's applies!


Step 2: Apply L'Hรดpital's Rule (first time)

limโกxโ†’โˆžx2ex=limโกxโ†’โˆž(x2)โ€ฒ(ex)โ€ฒ\lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{(x^2)'}{(e^x)'}

=limโกxโ†’โˆž2xex= \lim_{x \to \infty} \frac{2x}{e^x}


Step 3: Check the form again

As xโ†’โˆžx \to \infty: 2xโ†’โˆž2x \to \infty and exโ†’โˆže^x \to \infty

Still โˆžโˆž\frac{\infty}{\infty} form!


Step 4: Apply L'Hรดpital's Rule (second time)

limโกxโ†’โˆž2xex=limโกxโ†’โˆž(2x)โ€ฒ(ex)โ€ฒ\lim_{x \to \infty} \frac{2x}{e^x} = \lim_{x \to \infty} \frac{(2x)'}{(e^x)'}

=limโกxโ†’โˆž2ex= \lim_{x \to \infty} \frac{2}{e^x}


Step 5: Evaluate

=2โˆž=0= \frac{2}{\infty} = 0

Answer: limโกxโ†’โˆžx2ex=0\lim_{x \to \infty} \frac{x^2}{e^x} = 0


Interpretation:

Even though x2x^2 grows to infinity, exe^x grows so much faster that the ratio goes to 0.

Growth rate conclusion: Exponential functions grow faster than any polynomial!

In general: limโกxโ†’โˆžxnex=0\lim_{x \to \infty} \frac{x^n}{e^x} = 0 for any positive integer nn.

3Problem 3expert

โ“ Question:

Evaluate limโกxโ†’0+(sinโกx)x\lim_{x \to 0^+} (\sin x)^x using L'Hรดpital's Rule.

๐Ÿ’ก Show Solution

Step 1: Identify the form

As xโ†’0+x \to 0^+: sinโกxโ†’0+\sin x \to 0^+

So (sinโกx)x(\sin x)^x is the form 000^0 (indeterminate!)

Can't use L'Hรดpital's directly on this form.


Step 2: Use logarithms

Let y=(sinโกx)xy = (\sin x)^x

Take natural log of both sides: lnโกy=lnโก[(sinโกx)x]=xlnโก(sinโกx)\ln y = \ln[(\sin x)^x] = x \ln(\sin x)


Step 3: Find limit of lnโกy\ln y

limโกxโ†’0+lnโกy=limโกxโ†’0+xlnโก(sinโกx)\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} x \ln(\sin x)

This is 0โ‹…(โˆ’โˆž)0 \cdot (-\infty) form.


Step 4: Rewrite as a fraction

limโกxโ†’0+xlnโก(sinโกx)=limโกxโ†’0+lnโก(sinโกx)1/x\lim_{x \to 0^+} x \ln(\sin x) = \lim_{x \to 0^+} \frac{\ln(\sin x)}{1/x}

This is โˆ’โˆžโˆž\frac{-\infty}{\infty} form โ†’ can use L'Hรดpital's!


Step 5: Apply L'Hรดpital's Rule

Numerator: (lnโก(sinโกx))โ€ฒ=1sinโกxโ‹…cosโกx=cosโกxsinโกx=cotโกx(\ln(\sin x))' = \frac{1}{\sin x} \cdot \cos x = \frac{\cos x}{\sin x} = \cot x

Denominator: (1/x)โ€ฒ=โˆ’1/x2(1/x)' = -1/x^2

limโกxโ†’0+lnโก(sinโกx)1/x=limโกxโ†’0+cotโกxโˆ’1/x2\lim_{x \to 0^+} \frac{\ln(\sin x)}{1/x} = \lim_{x \to 0^+} \frac{\cot x}{-1/x^2}

=limโกxโ†’0+cosโกxsinโกxโ‹…(โˆ’x2)= \lim_{x \to 0^+} \frac{\cos x}{\sin x} \cdot (-x^2)

=limโกxโ†’0+โˆ’x2cosโกxsinโกx= \lim_{x \to 0^+} \frac{-x^2 \cos x}{\sin x}


Step 6: Simplify and apply L'Hรดpital's again

=limโกxโ†’0+โˆ’x2cosโกxsinโกx=limโกxโ†’0+(โˆ’xโ‹…xcosโกxsinโกx)= \lim_{x \to 0^+} \frac{-x^2 \cos x}{\sin x} = \lim_{x \to 0^+} \left(-x \cdot \frac{x\cos x}{\sin x}\right)

Since limโกxโ†’0sinโกxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1, we have limโกxโ†’0xsinโกx=1\lim_{x \to 0} \frac{x}{\sin x} = 1

=limโกxโ†’0+(โˆ’x)โ‹…cosโกxโ‹…1=0โ‹…1=0= \lim_{x \to 0^+} (-x) \cdot \cos x \cdot 1 = 0 \cdot 1 = 0


Step 7: Exponentiate to find yy

limโกxโ†’0+lnโกy=0\lim_{x \to 0^+} \ln y = 0

Therefore: limโกxโ†’0+y=e0=1\lim_{x \to 0^+} y = e^0 = 1

Answer: limโกxโ†’0+(sinโกx)x=1\lim_{x \to 0^+} (\sin x)^x = 1

4Problem 4medium

โ“ Question:

Evaluate lim(xโ†’0) (eหฃ - 1)/x using L'Hรดpital's Rule.

๐Ÿ’ก Show Solution

Step 1: Check form: As xโ†’0: eหฃ - 1 โ†’ eโฐ - 1 = 0 x โ†’ 0 Form is 0/0 โœ“ Can use L'Hรดpital's

Step 2: Apply L'Hรดpital's Rule: lim(xโ†’0) (eหฃ - 1)/x = lim(xโ†’0) d/dx[eหฃ - 1]/d/dx[x]

Step 3: Differentiate: d/dx[eหฃ - 1] = eหฃ d/dx[x] = 1

Step 4: Evaluate new limit: lim(xโ†’0) eหฃ/1 = eโฐ/1 = 1

Answer: 1

5Problem 5hard

โ“ Question:

Find lim(xโ†’โˆž) (ln(x))/x using L'Hรดpital's Rule.

๐Ÿ’ก Show Solution

Step 1: Check form: As xโ†’โˆž: ln(x) โ†’ โˆž x โ†’ โˆž Form is โˆž/โˆž โœ“ Can use L'Hรดpital's

Step 2: Apply L'Hรดpital's Rule: lim(xโ†’โˆž) (ln(x))/x = lim(xโ†’โˆž) d/dx[ln(x)]/d/dx[x]

Step 3: Differentiate: d/dx[ln(x)] = 1/x d/dx[x] = 1

Step 4: Evaluate new limit: lim(xโ†’โˆž) (1/x)/1 = lim(xโ†’โˆž) 1/x = 0

Step 5: Interpretation: Logarithm grows slower than any positive power of x

Answer: 0