Inclined Planes

Forces and motion on inclined surfaces

Inclined Planes

Introduction

An inclined plane is a flat surface tilted at an angle to the horizontal.

Why they're important:

  • Reduces force needed to lift objects (mechanical advantage)
  • Common in real world: ramps, hills, roofs
  • Requires careful component analysis

Coordinate System

Standard choice: Rotate axes so one axis is parallel to the incline.

  • x-axis: Parallel to incline (positive = up the incline)
  • y-axis: Perpendicular to incline (positive = away from surface)
  • Angle: θ\theta = angle incline makes with horizontal

Why this choice?

  • Motion is along the incline (parallel to x-axis)
  • No motion perpendicular to incline (y-direction equilibrium)
  • Simplifies math!

Forces on an Incline

Weight Components

Weight W=mgW = mg points straight down (not perpendicular to incline!).

Break weight into components:

Parallel to incline (down the slope): Wx=mgsinθW_x = mg\sin\theta

Perpendicular to incline (into the surface): Wy=mgcosθW_y = mg\cos\theta

Derivation from geometry:

  • Angle between weight and perpendicular to incline = θ\theta
  • Therefore: parallel component uses sinθ\sin\theta, perpendicular uses cosθ\cos\theta

Normal Force

Normal force NN acts perpendicular to the surface (along y-axis).

In y-direction (no acceleration perpendicular to incline): Nmgcosθ=0N - mg\cos\theta = 0 N=mgcosθN = mg\cos\theta

Key point: Normal force is NOT equal to mgmg on an incline!

Friction

Friction acts parallel to incline, opposing motion or attempted motion.

  • If object slides down: friction points up the incline
  • If object is pushed up: friction points down the incline

Maximum static friction: fs,max=μsN=μsmgcosθf_{s,max} = \mu_s N = \mu_s mg\cos\theta

Kinetic friction: fk=μkN=μkmgcosθf_k = \mu_k N = \mu_k mg\cos\theta

Motion Down a Frictionless Incline

Free body diagram:

  • Weight component parallel: mgsinθmg\sin\theta (down incline)
  • Weight component perpendicular: mgcosθmg\cos\theta (into surface)
  • Normal force: N=mgcosθN = mg\cos\theta (out from surface)
  • No friction

Apply Newton's Second Law (x-direction, parallel to incline):

Fx=ma\sum F_x = ma mgsinθ=mamg\sin\theta = ma a=gsinθa = g\sin\theta

Key results:

  • Acceleration is independent of mass!
  • Acceleration increases with steeper incline (θ\theta larger)
  • At θ=90°\theta = 90°: a=ga = g (free fall)
  • At θ=0°\theta = 0°: a=0a = 0 (horizontal surface)

Motion with Friction

Object at Rest on Incline

Question: What coefficient of friction is needed to prevent sliding?

Analysis:

Parallel to incline (equilibrium): fs=mgsinθf_s = mg\sin\theta

Maximum static friction: fs,max=μsN=μsmgcosθf_{s,max} = \mu_s N = \mu_s mg\cos\theta

Condition for no sliding: mgsinθμsmgcosθmg\sin\theta \leq \mu_s mg\cos\theta sinθμscosθ\sin\theta \leq \mu_s \cos\theta tanθμs\tan\theta \leq \mu_s

Critical angle: θc=tan1(μs)\theta_c = \tan^{-1}(\mu_s)

  • If θ<θc\theta < \theta_c: object stays at rest
  • If θ=θc\theta = \theta_c: object on verge of sliding
  • If θ>θc\theta > \theta_c: object slides down

Object Sliding Down Incline

Free body diagram:

  • Weight component parallel: mgsinθmg\sin\theta (down)
  • Kinetic friction: fk=μkmgcosθf_k = \mu_k mg\cos\theta (up)
  • Normal force: N=mgcosθN = mg\cos\theta

Apply Newton's Second Law:

Fx=ma\sum F_x = ma mgsinθμkmgcosθ=mamg\sin\theta - \mu_k mg\cos\theta = ma a=g(sinθμkcosθ)a = g(\sin\theta - \mu_k\cos\theta)

Special cases:

  • If sinθ=μkcosθ\sin\theta = \mu_k\cos\theta: a=0a = 0 (slides at constant velocity)
  • If sinθ>μkcosθ\sin\theta > \mu_k\cos\theta: a>0a > 0 (speeds up)
  • If sinθ<μkcosθ\sin\theta < \mu_k\cos\theta: Can't slide down (would need initial motion)

Object Pushed Up Incline

Forces parallel to incline:

  • Applied force FappF_{app} (up incline)
  • Weight component: mgsinθmg\sin\theta (down incline)
  • Friction: fk=μkmgcosθf_k = \mu_k mg\cos\theta (down incline, opposes motion)

Newton's Second Law: Fappmgsinθμkmgcosθ=maF_{app} - mg\sin\theta - \mu_k mg\cos\theta = ma

To push at constant velocity (a=0a = 0): Fapp=mgsinθ+μkmgcosθF_{app} = mg\sin\theta + \mu_k mg\cos\theta Fapp=mg(sinθ+μkcosθ)F_{app} = mg(\sin\theta + \mu_k\cos\theta)

Problem-Solving Strategy

  1. Draw the incline and identify angle θ\theta
  2. Rotate coordinate system (x parallel, y perpendicular to incline)
  3. Draw free body diagram with rotated axes
  4. Break weight into components:
    • Parallel: mgsinθmg\sin\theta
    • Perpendicular: mgcosθmg\cos\theta
  5. Find normal force from y-direction equilibrium: N=mgcosθN = mg\cos\theta
  6. Determine friction (static or kinetic)
  7. Apply Newton's Second Law in x-direction
  8. Solve for unknowns

Common Angles and Trig Values

| θ\theta | sinθ\sin\theta | cosθ\cos\theta | tanθ\tan\theta | |---------|-------------|-------------|-------------| | 0° | 00 | 11 | 00 | | 30°30° | 0.50.5 | 0.8660.866 | 0.5770.577 | | 37°37° | 0.60.6 | 0.80.8 | 0.750.75 | | 45°45° | 0.7070.707 | 0.7070.707 | 11 | | 53°53° | 0.80.8 | 0.60.6 | 1.331.33 | | 90°90° | 11 | 00 | undefined |

Real-World Applications

  • Ramps: Reduce force needed to lift heavy objects
  • Roads on hills: Banking prevents cars from sliding
  • Ski slopes: Steeper = faster (larger gsinθg\sin\theta)
  • Conveyor belts: Angle and friction determine maximum load

📚 Practice Problems

1Problem 1easy

Question:

A 55 kg block rests on a frictionless incline at 30°30°. What is its acceleration down the incline? (Use g=10g = 10 m/s²)

💡 Show Solution

Given:

  • Mass: m=5m = 5 kg
  • Incline angle: θ=30°\theta = 30°
  • Frictionless (no friction)
  • g=10g = 10 m/s²
  • sin30°=0.5\sin 30° = 0.5

Find: Acceleration down the incline

Free Body Diagram (rotated axes):

  • Weight component parallel (down incline): mgsinθmg\sin\theta
  • Weight component perpendicular: mgcosθmg\cos\theta
  • Normal force: NN (perpendicular, out from surface)

Apply Newton's Second Law (parallel to incline):

Fx=ma\sum F_x = ma mgsinθ=mamg\sin\theta = ma

Solve for acceleration: a=gsinθa = g\sin\theta a=(10)(0.5)a = (10)(0.5) a=5 m/s2a = 5 \text{ m/s}^2

Direction: Down the incline

Answer: The acceleration is 5 m/s² down the incline.

Key insight: Acceleration is independent of mass! A 5 kg block and a 50 kg block both accelerate at the same rate on a frictionless incline.

Check: At θ=90°\theta = 90°: a=gsin90°=ga = g\sin 90° = g (free fall) ✓

2Problem 2medium

Question:

A box sits on an incline at 37°37°. The coefficient of static friction is μs=0.75\mu_s = 0.75. Does the box slide down? (Use sin37°=0.6\sin 37° = 0.6, cos37°=0.8\cos 37° = 0.8, tan37°=0.75\tan 37° = 0.75)

💡 Show Solution

Given:

  • Incline angle: θ=37°\theta = 37°
  • Coefficient of static friction: μs=0.75\mu_s = 0.75
  • Box initially at rest

Find: Does it slide?

Method 1: Compare forces

Step 1: Force trying to pull box down incline: Fdown=mgsin37°=0.6mgF_{down} = mg\sin 37° = 0.6mg

Step 2: Maximum friction force holding box: fs,max=μsN=μsmgcos37°f_{s,max} = \mu_s N = \mu_s mg\cos 37° fs,max=(0.75)(mg)(0.8)=0.6mgf_{s,max} = (0.75)(mg)(0.8) = 0.6mg

Step 3: Compare: Fdown=0.6mg=fs,maxF_{down} = 0.6mg = f_{s,max}

Conclusion: The box is on the verge of sliding (just barely held in place).

Method 2: Critical angle

Critical angle: θc=tan1(μs)\theta_c = \tan^{-1}(\mu_s)

tanθc=0.75\tan\theta_c = 0.75 θc=tan1(0.75)=37°\theta_c = \tan^{-1}(0.75) = 37°

Since θ=θc\theta = \theta_c, the box is on the verge of sliding.

Answer: The box is on the verge of sliding but does not slide (at the critical angle). Any slight increase in angle or decrease in friction would cause sliding.

Key insight: When tanθ=μs\tan\theta = \mu_s, the object is at the critical angle. Notice that tan37°=0.75=μs\tan 37° = 0.75 = \mu_s!

3Problem 3hard

Question:

A 1010 kg sled slides down a 30°30° incline with coefficient of kinetic friction μk=0.2\mu_k = 0.2. Find: (a) the acceleration of the sled, (b) the speed after sliding 2020 m from rest. (Use g=10g = 10 m/s², sin30°=0.5\sin 30° = 0.5, cos30°=0.866\cos 30° = 0.866)

💡 Show Solution

Given:

  • Mass: m=10m = 10 kg
  • Angle: θ=30°\theta = 30°
  • μk=0.2\mu_k = 0.2
  • Distance: d=20d = 20 m
  • Initial velocity: v0=0v_0 = 0 (starts from rest)
  • g=10g = 10 m/s²

Part (a): Find acceleration

Step 1: Find normal force N=mgcosθ=(10)(10)(0.866)=86.6 NN = mg\cos\theta = (10)(10)(0.866) = 86.6 \text{ N}

Step 2: Find kinetic friction fk=μkN=(0.2)(86.6)=17.32 Nf_k = \mu_k N = (0.2)(86.6) = 17.32 \text{ N}

Step 3: Find weight component down incline Fparallel=mgsinθ=(10)(10)(0.5)=50 NF_{parallel} = mg\sin\theta = (10)(10)(0.5) = 50 \text{ N}

Step 4: Apply Newton's Second Law (down incline is positive)

Fx=ma\sum F_x = ma mgsinθfk=mamg\sin\theta - f_k = ma 5017.32=10a50 - 17.32 = 10a 32.68=10a32.68 = 10a a=3.268 m/s23.27 m/s2a = 3.268 \text{ m/s}^2 \approx 3.27 \text{ m/s}^2

Alternative formula: a=g(sinθμkcosθ)a = g(\sin\theta - \mu_k\cos\theta) a=10(0.50.2×0.866)a = 10(0.5 - 0.2 \times 0.866) a=10(0.50.173)a = 10(0.5 - 0.173) a=10(0.327)=3.27 m/s2a = 10(0.327) = 3.27 \text{ m/s}^2

Part (b): Find speed after 20 m

Use kinematic equation: v2=v02+2adv^2 = v_0^2 + 2ad

v2=02+2(3.27)(20)v^2 = 0^2 + 2(3.27)(20) v2=130.8v^2 = 130.8 v=130.811.4 m/sv = \sqrt{130.8} \approx 11.4 \text{ m/s}

Answers:

  • (a) Acceleration: 3.27 m/s² down the incline
  • (b) Speed after 20 m: 11.4 m/s

Check: Without friction, a=gsin30°=5a = g\sin 30° = 5 m/s². With friction, a=3.27a = 3.27 m/s² < 5 m/s² ✓