Graphing Trigonometric Functions

Graph sine, cosine, and tangent functions and understand transformations including amplitude, period, phase shift, and vertical shift.

Graphing Trigonometric Functions

Parent Functions

The three main trigonometric functions have distinct graphs:

Sine Function: y=sin⁥(x)y = \sin(x)

  • Domain: All real numbers (−∞,∞)(-\infty, \infty)
  • Range: [−1,1][-1, 1]
  • Period: 2Ī€2\pi
  • Amplitude: 1
  • Key points: (0,0)(0, 0), (Ī€2,1)(\frac{\pi}{2}, 1), (Ī€,0)(\pi, 0), (3Ī€2,−1)(\frac{3\pi}{2}, -1), (2Ī€,0)(2\pi, 0)
  • Zeros: x=nĪ€x = n\pi where nn is an integer

Cosine Function: y=cos⁥(x)y = \cos(x)

  • Domain: All real numbers (−∞,∞)(-\infty, \infty)
  • Range: [−1,1][-1, 1]
  • Period: 2Ī€2\pi
  • Amplitude: 1
  • Key points: (0,1)(0, 1), (Ī€2,0)(\frac{\pi}{2}, 0), (Ī€,−1)(\pi, -1), (3Ī€2,0)(\frac{3\pi}{2}, 0), (2Ī€,1)(2\pi, 1)
  • Zeros: x=Ī€2+nĪ€x = \frac{\pi}{2} + n\pi where nn is an integer

Tangent Function: y=tan⁥(x)y = \tan(x)

  • Domain: All real numbers except x=Ī€2+nĪ€x = \frac{\pi}{2} + n\pi where nn is an integer
  • Range: All real numbers (−∞,∞)(-\infty, \infty)
  • Period: Ī€\pi
  • Vertical asymptotes: x=Ī€2+nĪ€x = \frac{\pi}{2} + n\pi
  • Key points: (0,0)(0, 0), (Ī€4,1)(\frac{\pi}{4}, 1), (âˆ’Ī€4,−1)(-\frac{\pi}{4}, -1)
  • Zeros: x=nĪ€x = n\pi where nn is an integer

General Form and Transformations

The general form of a sinusoidal function is:

y=Asin⁡(B(x−C))+Dory=Acos⁡(B(x−C))+Dy = A\sin(B(x - C)) + D \quad \text{or} \quad y = A\cos(B(x - C)) + D

Where:

  • âˆŖAâˆŖ|A| = Amplitude (vertical stretch/compression)
    • If A<0A < 0, the graph is reflected over the x-axis
  • BB affects the Period: Period = 2Ī€âˆŖBâˆŖ\frac{2\pi}{|B|}
    • If B>1B > 1, horizontal compression (shorter period)
    • If 0<B<10 < B < 1, horizontal stretch (longer period)
  • CC = Phase shift (horizontal translation)
    • If C>0C > 0, shift right
    • If C<0C < 0, shift left
  • DD = Vertical shift (midline)
    • The midline is y=Dy = D

For Tangent Functions

y=Atan⁡(B(x−C))+Dy = A\tan(B(x - C)) + D

  • Period = Ī€âˆŖBâˆŖ\frac{\pi}{|B|}
  • Vertical asymptotes at x=C+Ī€2B+nĪ€Bx = C + \frac{\pi}{2B} + \frac{n\pi}{B} where nn is an integer

Finding Key Features from Equations

Given y=Asin⁡(B(x−C))+Dy = A\sin(B(x - C)) + D:

  1. Amplitude: âˆŖAâˆŖ|A|
  2. Period: 2Ī€âˆŖBâˆŖ\frac{2\pi}{|B|}
  3. Phase Shift: CC
  4. Vertical Shift/Midline: y=Dy = D
  5. Maximum value: D+âˆŖAâˆŖD + |A|
  6. Minimum value: Dâˆ’âˆŖAâˆŖD - |A|

Graphing Strategy

  1. Identify AA, BB, CC, and DD
  2. Draw the midline at y=Dy = D
  3. Mark the amplitude (max at D+âˆŖAâˆŖD + |A|, min at Dâˆ’âˆŖAâˆŖD - |A|)
  4. Find the period and mark one complete cycle
  5. Apply phase shift (start at x=Cx = C)
  6. Plot key points within one period
  7. Sketch the curve and extend if needed

Common Patterns

Cosecant and Secant

  • csc⁥(x)=1sin⁥(x)\csc(x) = \frac{1}{\sin(x)}: Has vertical asymptotes where sin⁥(x)=0\sin(x) = 0
  • sec⁥(x)=1cos⁥(x)\sec(x) = \frac{1}{\cos(x)}: Has vertical asymptotes where cos⁥(x)=0\cos(x) = 0

Cotangent

  • cot⁥(x)=1tan⁥(x)\cot(x) = \frac{1}{\tan(x)}: Period is Ī€\pi, asymptotes where tan⁥(x)=0\tan(x) = 0

📚 Practice Problems

1Problem 1easy

❓ Question:

Graph y=2sin⁥(x)+1y = 2\sin(x) + 1 and identify the amplitude, period, and midline.

💡 Show Solution

Solution:

Given: y=2sin⁥(x)+1y = 2\sin(x) + 1

Compare to general form: y=Asin⁡(B(x−C))+Dy = A\sin(B(x - C)) + D

  • A=2A = 2
  • B=1B = 1
  • C=0C = 0
  • D=1D = 1

Features:

  1. Amplitude: âˆŖAâˆŖ=âˆŖ2âˆŖ=2|A| = |2| = 2
  2. Period: 2Ī€âˆŖBâˆŖ=2Ī€1=2Ī€\frac{2\pi}{|B|} = \frac{2\pi}{1} = 2\pi
  3. Phase Shift: C=0C = 0 (no horizontal shift)
  4. Midline: y=D=1y = D = 1
  5. Maximum: 1+2=31 + 2 = 3
  6. Minimum: 1−2=−11 - 2 = -1

Key Points (one period from x=0x = 0 to x=2Ī€x = 2\pi):

  • Start: (0,1)(0, 1) (midline)
  • Max: (Ī€2,3)(\frac{\pi}{2}, 3)
  • Midline: (Ī€,1)(\pi, 1)
  • Min: (3Ī€2,−1)(\frac{3\pi}{2}, -1)
  • End: (2Ī€,1)(2\pi, 1) (midline)

The graph oscillates between y=−1y = -1 and y=3y = 3, centered on the midline y=1y = 1.

2Problem 2medium

❓ Question:

For the function f(x)=3sin⁥(2xâˆ’Ī€3)+1f(x) = 3\sin\left(2x - \frac{\pi}{3}\right) + 1:

a) Find the amplitude. b) Find the period. c) Find the phase shift. d) Find the vertical shift (midline).

💡 Show Solution

Solution:

The general form is f(x)=Asin⁡(B(x−C))+Df(x) = A\sin(B(x - C)) + D or f(x)=Asin⁡(Bx−BC)+Df(x) = A\sin(Bx - BC) + D

Our function: f(x)=3sin⁥(2xâˆ’Ī€3)+1f(x) = 3\sin\left(2x - \frac{\pi}{3}\right) + 1

Rewrite in standard form: f(x)=3sin⁥(2(xâˆ’Ī€6))+1f(x) = 3\sin\left(2\left(x - \frac{\pi}{6}\right)\right) + 1

Part (a): Amplitude =âˆŖAâˆŖ=âˆŖ3âˆŖ=3= |A| = |3| = 3

Part (b): Period =2Ī€âˆŖBâˆŖ=2Ī€2=Ī€= \frac{2\pi}{|B|} = \frac{2\pi}{2} = \pi

Part (c): Phase shift =C=Ī€6= C = \frac{\pi}{6} (to the right)

Alternatively, from 2xâˆ’Ī€3=02x - \frac{\pi}{3} = 0, we get x=Ī€6x = \frac{\pi}{6}

Part (d): Vertical shift =D=1= D = 1

The midline is y=1y = 1.

3Problem 3medium

❓ Question:

Find the equation of a cosine function with amplitude 3, period ΀\pi, phase shift ΀4\frac{\pi}{4} to the right, and vertical shift down 2.

💡 Show Solution

Solution:

General form: y=Acos⁡(B(x−C))+Dy = A\cos(B(x - C)) + D

Given information:

  • Amplitude: âˆŖAâˆŖ=3|A| = 3, so A=3A = 3 (assuming positive)
  • Period: 2Ī€B=Ī€\frac{2\pi}{B} = \pi
  • Phase shift right: C=Ī€4C = \frac{\pi}{4}
  • Vertical shift down: D=−2D = -2

Find BB: 2Ī€B=Ī€\frac{2\pi}{B} = \pi 2Ī€=Ī€B2\pi = \pi B B=2B = 2

Equation: y=3cos⁥(2(xâˆ’Ī€4))−2y = 3\cos(2(x - \frac{\pi}{4})) - 2

Or simplified: y=3cos⁥(2xâˆ’Ī€2)−2y = 3\cos(2x - \frac{\pi}{2}) - 2

Verification:

  • Amplitude: âˆŖ3âˆŖ=3|3| = 3 ✓
  • Period: 2Ī€2=Ī€\frac{2\pi}{2} = \pi ✓
  • Phase shift: Ī€4\frac{\pi}{4} right ✓
  • Vertical shift: −2-2 ✓
  • Range: [−2−3,−2+3]=[−5,1][-2-3, -2+3] = [-5, 1]

4Problem 4hard

❓ Question:

Consider g(x)=−2cos⁥(Ī€x4+Ī€)−3g(x) = -2\cos\left(\frac{\pi x}{4} + \pi\right) - 3.

a) Determine the amplitude, period, phase shift, and midline. b) Find the maximum and minimum values of g(x)g(x). c) Find the first three xx-intercepts for xâ‰Ĩ0x \geq 0.

💡 Show Solution

Solution:

Part (a): Rewrite: g(x)=−2cos⁥(Ī€4(x+4))−3g(x) = -2\cos\left(\frac{\pi}{4}(x + 4)\right) - 3

Here: A=−2A = -2, B=Ī€4B = \frac{\pi}{4}, C=−4C = -4, D=−3D = -3

  • Amplitude =âˆŖAâˆŖ=âˆŖâˆ’2âˆŖ=2= |A| = |-2| = 2
  • Period =2Ī€âˆŖBâˆŖ=2΀΀/4=8= \frac{2\pi}{|B|} = \frac{2\pi}{\pi/4} = 8
  • Phase shift =C=−4= C = -4 (4 units to the left)
  • Midline: y=D=−3y = D = -3

Part (b): For cosine, the range is [−1,1][-1, 1].

With amplitude 2 and reflection: −2cos⁡(...)∈[−2,2]-2\cos(...) \in [-2, 2]

Adding vertical shift of −3-3:

Maximum: 2+(−3)=−12 + (-3) = -1 Minimum: −2+(−3)=−5-2 + (-3) = -5

Part (c): Set g(x)=0g(x) = 0:

−2cos⁥(Ī€x4+Ī€)−3=0-2\cos\left(\frac{\pi x}{4} + \pi\right) - 3 = 0

−2cos⁥(Ī€x4+Ī€)=3-2\cos\left(\frac{\pi x}{4} + \pi\right) = 3

cos⁥(Ī€x4+Ī€)=−32\cos\left(\frac{\pi x}{4} + \pi\right) = -\frac{3}{2}

But wait! The range of cosine is [−1,1][-1, 1], and −32<−1-\frac{3}{2} < -1.

Therefore, there are no xx-intercepts (the graph never crosses the xx-axis).

This makes sense because the maximum value is −1-1, which is still below the xx-axis.

5Problem 5hard

❓ Question:

Graph y=−12tan⁥(x2)+3y = -\frac{1}{2}\tan(\frac{x}{2}) + 3 and identify all asymptotes in the interval [0,4Ī€][0, 4\pi].

💡 Show Solution

Solution:

Given: y=−12tan⁡(x2)+3y = -\frac{1}{2}\tan(\frac{x}{2}) + 3

Compare to general form: y=Atan⁡(B(x−C))+Dy = A\tan(B(x - C)) + D

  • A=−12A = -\frac{1}{2} (negative means reflection over x-axis)
  • B=12B = \frac{1}{2}
  • C=0C = 0
  • D=3D = 3

Features:

  1. Period: Ī€âˆŖBâˆŖ=Ī€1/2=2Ī€\frac{\pi}{|B|} = \frac{\pi}{1/2} = 2\pi
  2. Vertical shift: y=3y = 3 (midline)
  3. Reflection: Negative AA means graph is reflected over the midline
  4. Vertical asymptotes occur at x=΀2B+n΀Bx = \frac{\pi}{2B} + \frac{n\pi}{B}

Find asymptotes: x=΀2(1/2)+n΀1/2=΀+2n΀x = \frac{\pi}{2(1/2)} + \frac{n\pi}{1/2} = \pi + 2n\pi

For n=0,1,2n = 0, 1, 2:

  • n=0n = 0: x=Ī€x = \pi
  • n=1n = 1: x=3Ī€x = 3\pi
  • n=2n = 2: x=5Ī€x = 5\pi (outside interval)

In [0,4Ī€][0, 4\pi], asymptotes are at x=Ī€x = \pi and x=3Ī€x = 3\pi.

Key points between asymptotes:

Between x=âˆ’Ī€x = -\pi and x=Ī€x = \pi:

  • (0,3)(0, 3) (midline, where tangent crosses zero)
  • (âˆ’Ī€2,3.5)(-\frac{\pi}{2}, 3.5) (quarter period from center)
  • (Ī€2,2.5)(\frac{\pi}{2}, 2.5) (quarter period from center)

The graph decreases from top to bottom (due to negative AA) within each period, with the center line at y=3y = 3.