Enthalpy and Calorimetry

Understand heat, enthalpy changes, calorimetry, Hess's law, and standard enthalpies of formation.

Enthalpy and Calorimetry

Energy and Heat

System: Part of universe we're studying Surroundings: Everything else

Energy transfer:

  • Heat (q): Energy transferred due to temperature difference
  • Work (w): Energy transferred by force through distance

First Law of Thermodynamics:

ΔE=q+w\Delta E = q + w

Sign conventions:

  • +q: Heat absorbed by system (endothermic)
  • -q: Heat released by system (exothermic)
  • +w: Work done on system
  • -w: Work done by system

Enthalpy (H)

Enthalpy: Heat content at constant pressure

ΔH=qp\Delta H = q_p

At constant pressure (most reactions): Heat change = enthalpy change

Exothermic reaction:

  • ΔH < 0 (negative)
  • Releases heat to surroundings
  • Products lower energy than reactants
  • Feels warm

Endothermic reaction:

  • ΔH > 0 (positive)
  • Absorbs heat from surroundings
  • Products higher energy than reactants
  • Feels cold

Calorimetry

Calorimetry: Measuring heat changes

Heat capacity equation:

q=mcΔTq = mc\Delta T

Where:

  • q = heat (J)
  • m = mass (g)
  • c = specific heat capacity (J/g·°C)
  • ΔT = T_{final} - T_{initial}

Common specific heats:

  • Water: 4.18 J/(g·°C)
  • Metals: 0.1-1 J/(g·°C)

Coffee Cup Calorimeter

For solution reactions:

  • Constant pressure (open to atmosphere)
  • Measures q_p = ΔH
  • Simple styrofoam cup

Assumption: All heat goes to solution (usually aqueous)

qsolution=qreactionq_{\text{solution}} = -q_{\text{reaction}}

Bomb Calorimeter

For combustion:

  • Constant volume
  • Measures ΔE (not ΔH)
  • More precise, sealed container

q=CcalΔTq = C_{\text{cal}}\Delta T

C_{cal} = calorimeter constant (J/°C)

Hess's Law

Hess's Law: ΔH is path independent - only depends on initial and final states

Use: Calculate ΔH for reaction from known ΔH values

Rules:

  1. Reverse reaction → change sign of ΔH
  2. Multiply reaction by n → multiply ΔH by n
  3. Add reactions → add ΔH values

Example approach:

  • Manipulate given equations to match target
  • Add them to get target equation
  • Add corresponding ΔH values

Standard Enthalpy of Formation (ΔH°_f)

ΔH°_f: Enthalpy change to form 1 mole from elements in standard states

Standard conditions:

  • 25°C (298 K)
  • 1 atm pressure
  • 1 M concentration

Key rules:

  • ΔH°_f of element in standard state = 0
  • ΔH°_f values tabulated for compounds

Examples:

  • C(graphite): ΔH°_f = 0
  • O₂(g): ΔH°_f = 0
  • H₂O(l): ΔH°_f = -285.8 kJ/mol
  • CO₂(g): ΔH°_f = -393.5 kJ/mol

Calculating ΔH°_{rxn}

From ΔH°_f values:

ΔH°rxn=nΔH°f(products)nΔH°f(reactants)\Delta H°_{\text{rxn}} = \sum n\Delta H°_f(\text{products}) - \sum n\Delta H°_f(\text{reactants})

Steps:

  1. Sum (coefficient × ΔH°_f) for products
  2. Sum (coefficient × ΔH°_f) for reactants
  3. Subtract: products - reactants

Shortcut: Products minus reactants (with coefficients)

Bond Enthalpies

Bond enthalpy: Energy to break 1 mole of bonds (always positive)

Estimating ΔH_{rxn}:

ΔHrxn=bonds brokenbonds formed\Delta H_{\text{rxn}} = \sum \text{bonds broken} - \sum \text{bonds formed}

Energy required to break bonds (positive) Energy released forming bonds (negative)

Note: Bond enthalpies are averages, less accurate than ΔH°_f

📚 Practice Problems

1Problem 1easy

Question:

When 50.0 mL of 1.0 M HCl is mixed with 50.0 mL of 1.0 M NaOH in a coffee cup calorimeter, the temperature rises from 21.0°C to 27.5°C. Calculate ΔH for the reaction in kJ/mol. Assume solution density = 1.0 g/mL and c = 4.18 J/(g·°C).

💡 Show Solution

Given:

  • V_{HCl} = 50.0 mL, [HCl] = 1.0 M
  • V_{NaOH} = 50.0 mL, [NaOH] = 1.0 M
  • T_i = 21.0°C, T_f = 27.5°C
  • Density = 1.0 g/mL, c = 4.18 J/(g·°C)

Reaction: HCl + NaOH → NaCl + H₂O


Step 1: Calculate heat absorbed by solution

Total volume = 50.0 + 50.0 = 100.0 mL

Mass = 100.0 mL × 1.0 g/mL = 100.0 g

ΔT = 27.5 - 21.0 = 6.5°C

qsolution=mcΔTq_{\text{solution}} = mc\Delta T qsolution=(100.0)(4.18)(6.5)q_{\text{solution}} = (100.0)(4.18)(6.5) qsolution=2717 J=2.72 kJq_{\text{solution}} = 2717 \text{ J} = 2.72 \text{ kJ}


Step 2: Calculate heat of reaction

qreaction=qsolution=2.72 kJq_{\text{reaction}} = -q_{\text{solution}} = -2.72 \text{ kJ}

(Negative because reaction releases heat - exothermic)


Step 3: Calculate moles reacted

Moles HCl = (1.0 M)(0.050 L) = 0.050 mol Moles NaOH = (1.0 M)(0.050 L) = 0.050 mol

Limiting reactant: Both 0.050 mol (1:1 ratio) → 0.050 mol reacts


Step 4: Calculate ΔH per mole

ΔH=qreactionmoles=2.72 kJ0.050 mol\Delta H = \frac{q_{\text{reaction}}}{\text{moles}} = \frac{-2.72 \text{ kJ}}{0.050 \text{ mol}}

ΔH=54.4 kJ/mol\Delta H = -54.4 \text{ kJ/mol}

Answer: ΔH = -54 kJ/mol (exothermic)

Note: Literature value is -57.1 kJ/mol - our answer is close!

2Problem 2medium

Question:

A 50.0 g sample of aluminum is heated from 20.0°C to 95.0°C. (a) Calculate the heat absorbed by the aluminum (specific heat of Al = 0.900 J/g°C). (b) If this heat came from burning methane (CH₄), which releases 890 kJ/mol, how many grams of methane were burned?

💡 Show Solution

Solution:

(a) Heat absorbed by aluminum: q = mcΔT where m = mass, c = specific heat, ΔT = temperature change

q = (50.0 g)(0.900 J/g°C)(95.0 - 20.0)°C q = (50.0)(0.900)(75.0) q = 3,375 J = 3.38 kJ

(b) Mass of methane burned: Energy from CH₄: 890 kJ/mol

Moles of CH₄ = 3.38 kJ / 890 kJ/mol = 0.00380 mol

Molar mass of CH₄ = 12.01 + 4(1.008) = 16.04 g/mol Mass = 0.00380 mol × 16.04 g/mol = 0.0609 g

3Problem 3medium

Question:

Given: (1) C(s) + O₂(g) → CO₂(g), ΔH° = -393.5 kJ, (2) H₂(g) + ½O₂(g) → H₂O(l), ΔH° = -285.8 kJ, (3) C₂H₅OH(l) + 3O₂(g) → 2CO₂(g) + 3H₂O(l), ΔH° = -1367 kJ. Use Hess's law to find ΔH° for: 2C(s) + 3H₂(g) + ½O₂(g) → C₂H₅OH(l)

💡 Show Solution

Target equation: 2C(s) + 3H₂(g) + ½O₂(g) → C₂H₅OH(l)

Given equations:

  1. C(s) + O₂(g) → CO₂(g), ΔH° = -393.5 kJ
  2. H₂(g) + ½O₂(g) → H₂O(l), ΔH° = -285.8 kJ
  3. C₂H₅OH(l) + 3O₂(g) → 2CO₂(g) + 3H₂O(l), ΔH° = -1367 kJ

Strategy: Manipulate equations to match target

Target needs:

  • 2 C(s) on left → multiply equation 1 by 2
  • 3 H₂(g) on left → multiply equation 2 by 3
  • C₂H₅OH(l) on right → reverse equation 3

Equation 1 × 2: 2C(s) + 2O₂(g) → 2CO₂(g) ΔH° = 2(-393.5) = -787.0 kJ

Equation 2 × 3: 3H₂(g) + 3/2 O₂(g) → 3H₂O(l) ΔH° = 3(-285.8) = -857.4 kJ

Equation 3 reversed: 2CO₂(g) + 3H₂O(l) → C₂H₅OH(l) + 3O₂(g) ΔH° = -(-1367) = +1367 kJ


Add all three:

2C(s) + 2O₂(g) → 2CO₂(g) 3H₂(g) + 3/2 O₂(g) → 3H₂O(l) 2CO₂(g) + 3H₂O(l) → C₂H₅OH(l) + 3O₂(g)

Cancel species on both sides:

  • 2CO₂(g): appears as product (eq 1) and reactant (eq 3) → cancel
  • 3H₂O(l): appears as product (eq 2) and reactant (eq 3) → cancel
  • O₂(g): 2 + 3/2 on left, 3 on right → net ½ on left

Net equation: 2C(s) + 3H₂(g) + ½O₂(g) → C₂H₅OH(l) ✓


Add ΔH° values:

ΔH°=787.0+(857.4)+1367\Delta H° = -787.0 + (-857.4) + 1367 ΔH°=787.0857.4+1367\Delta H° = -787.0 - 857.4 + 1367 ΔH°=277.4 kJ\Delta H° = -277.4 \text{ kJ}

Answer: ΔH° = -277 kJ

This is ΔH°_f of ethanol!

4Problem 4hard

Question:

Given the following thermochemical equations:

  • C(s) + O₂(g) → CO₂(g) ΔH° = -393.5 kJ
  • H₂(g) + ½O₂(g) → H₂O(l) ΔH° = -285.8 kJ
  • 2C₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l) ΔH° = -3119.6 kJ

Use Hess's Law to calculate ΔH°_f for C₂H₆(g).

💡 Show Solution

Solution:

We want: 2C(s) + 3H₂(g) → C₂H₆(g) ΔH°_f = ?

Strategy: Manipulate given equations to get target equation.

From equation 3: 4CO₂(g) + 6H₂O(l) → 2C₂H₆(g) + 7O₂(g) ΔH = +3119.6 kJ (reversed)

From equation 1 (×4): 4C(s) + 4O₂(g) → 4CO₂(g) ΔH = 4(-393.5) = -1574.0 kJ

From equation 2 (×6): 6H₂(g) + 3O₂(g) → 6H₂O(l) ΔH = 6(-285.8) = -1714.8 kJ

Adding all three: 4CO₂ + 6H₂O → 2C₂H₆ + 7O₂ +3119.6 kJ 4C + 4O₂ → 4CO₂ -1574.0 kJ 6H₂ + 3O₂ → 6H₂O -1714.8 kJ


4C + 6H₂ → 2C₂H₆ -169.2 kJ

For 1 mole of C₂H₆: 2C(s) + 3H₂(g) → C₂H₆(g) ΔH°_f = -169.2 kJ / 2 = -84.6 kJ/mol

5Problem 5hard

Question:

Calculate ΔH°_{rxn} for: CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(l) using ΔH°_f values: CH₄(g) = -74.8 kJ/mol, CO₂(g) = -393.5 kJ/mol, H₂O(l) = -285.8 kJ/mol, O₂(g) = 0.

💡 Show Solution

Reaction: CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(l)

Given ΔH°_f values:

  • CH₄(g): -74.8 kJ/mol
  • O₂(g): 0 (element in standard state)
  • CO₂(g): -393.5 kJ/mol
  • H₂O(l): -285.8 kJ/mol

Formula:

ΔH°rxn=nΔH°f(products)nΔH°f(reactants)\Delta H°_{\text{rxn}} = \sum n\Delta H°_f(\text{products}) - \sum n\Delta H°_f(\text{reactants})


Products:

1 mol CO₂: 1(-393.5) = -393.5 kJ 2 mol H₂O: 2(-285.8) = -571.6 kJ

Sum products: -393.5 + (-571.6) = -965.1 kJ


Reactants:

1 mol CH₄: 1(-74.8) = -74.8 kJ 2 mol O₂: 2(0) = 0 kJ

Sum reactants: -74.8 + 0 = -74.8 kJ


Calculate ΔH°_{rxn}:

ΔH°rxn=965.1(74.8)\Delta H°_{\text{rxn}} = -965.1 - (-74.8) ΔH°rxn=965.1+74.8\Delta H°_{\text{rxn}} = -965.1 + 74.8 ΔH°rxn=890.3 kJ\Delta H°_{\text{rxn}} = -890.3 \text{ kJ}

Answer: ΔH°_{rxn} = -890 kJ


Interpretation:

  • Highly exothermic (negative ΔH)
  • This is combustion of methane (natural gas)
  • Releases 890 kJ per mole CH₄ burned
  • Why natural gas is good fuel

Check:

  • Products more negative than reactants → exothermic ✓
  • Magnitude makes sense for combustion ✓