Derivatives of Trigonometric Functions

Finding derivatives of sine, cosine, tangent, and other trig functions

📐 Derivatives of Trigonometric Functions

The Six Basic Derivatives

You need to memorize these six fundamental trig derivatives:

Primary Functions

ddx[sinx]=cosx\frac{d}{dx}[\sin x] = \cos x

ddx[cosx]=sinx\frac{d}{dx}[\cos x] = -\sin x

ddx[tanx]=sec2x\frac{d}{dx}[\tan x] = \sec^2 x

Secondary Functions

ddx[cscx]=cscxcotx\frac{d}{dx}[\csc x] = -\csc x \cot x

ddx[secx]=secxtanx\frac{d}{dx}[\sec x] = \sec x \tan x

ddx[cotx]=csc2x\frac{d}{dx}[\cot x] = -\csc^2 x

💡 Pattern: Notice that the derivatives of "co-functions" (cosine, cosecant, cotangent) have negative signs!


Memory Tricks

Trick 1: The Sign Pattern

  • CO-functions (cos, csc, cot) → derivatives are NEGATIVE
  • Non-co-functions (sin, sec, tan) → derivatives are positive

Trick 2: Pairs

  • sinx\sin x and cosx\cos x trade back and forth (with a sign change for cosine)
  • secx\sec x and tanx\tan x appear together: secxtanx\sec x \tan x
  • cscx\csc x and cotx\cot x appear together: cscxcotx-\csc x \cot x

Trick 3: Squares

  • Derivative of tanx\tan x is sec2x\sec^2 x (square!)
  • Derivative of cotx\cot x is csc2x-\csc^2 x (square with negative!)

Using the Chain Rule with Trig Functions

When the inside is NOT just xx, use the Chain Rule!

General Formula

ddx[sin(u)]=cos(u)u\frac{d}{dx}[\sin(u)] = \cos(u) \cdot u'

ddx[cos(u)]=sin(u)u\frac{d}{dx}[\cos(u)] = -\sin(u) \cdot u'

ddx[tan(u)]=sec2(u)u\frac{d}{dx}[\tan(u)] = \sec^2(u) \cdot u'

Examples

  1. ddx[sin(3x)]=cos(3x)3=3cos(3x)\frac{d}{dx}[\sin(3x)] = \cos(3x) \cdot 3 = 3\cos(3x)

  2. ddx[cos(x2)]=sin(x2)2x=2xsin(x2)\frac{d}{dx}[\cos(x^2)] = -\sin(x^2) \cdot 2x = -2x\sin(x^2)

  3. ddx[tan(5x+1)]=sec2(5x+1)5=5sec2(5x+1)\frac{d}{dx}[\tan(5x + 1)] = \sec^2(5x + 1) \cdot 5 = 5\sec^2(5x + 1)


Powers of Trig Functions

Notation Warning

sin2x\sin^2 x means (sinx)2(\sin x)^2, NOT sin(sinx)\sin(\sin x)

Similarly: cos3x=(cosx)3\cos^3 x = (\cos x)^3

Taking Derivatives

Use the Chain Rule with the power on the outside!

Example: ddx[sin2x]\frac{d}{dx}[\sin^2 x]

Think of this as (sinx)2(\sin x)^2:

  • Outside: square function, so 2(sinx)2(\sin x)
  • Inside: sine function, so cosx\cos x
  • Answer: 2sinxcosx2\sin x \cos x

Example: ddx[cos3x]\frac{d}{dx}[\cos^3 x]

Think of this as (cosx)3(\cos x)^3:

  • Outside: cube function, so 3(cosx)23(\cos x)^2
  • Inside: cosine function, so sinx-\sin x
  • Answer: 3cos2x(sinx)=3cos2xsinx3\cos^2 x \cdot (-\sin x) = -3\cos^2 x \sin x

Common Applications

Application 1: Motion Problems

If s(t)=5sin(2t)s(t) = 5\sin(2t) represents position, find velocity at t=π4t = \frac{\pi}{4}:

v(t)=s(t)=5cos(2t)2=10cos(2t)v(t) = s'(t) = 5\cos(2t) \cdot 2 = 10\cos(2t)

v(π4)=10cos(π2)=10(0)=0v\left(\frac{\pi}{4}\right) = 10\cos\left(\frac{\pi}{2}\right) = 10(0) = 0

Application 2: Rate of Change

The height of a Ferris wheel car: h(t)=30+25sin(πt10)h(t) = 30 + 25\sin\left(\frac{\pi t}{10}\right) feet

Rate of change of height:

h(t)=25cos(πt10)π10=5π2cos(πt10)h'(t) = 25\cos\left(\frac{\pi t}{10}\right) \cdot \frac{\pi}{10} = \frac{5\pi}{2}\cos\left(\frac{\pi t}{10}\right)


⚠️ Common Mistakes

Mistake 1: Forgetting the Negative

ddx[cosx]=sinx\frac{d}{dx}[\cos x] = \sin xddx[cosx]=sinx\frac{d}{dx}[\cos x] = -\sin x

Mistake 2: Wrong Square

ddx[tanx]=tan2x\frac{d}{dx}[\tan x] = \tan^2 xddx[tanx]=sec2x\frac{d}{dx}[\tan x] = \sec^2 x

Mistake 3: Forgetting Chain Rule

ddx[sin(2x)]=cos(2x)\frac{d}{dx}[\sin(2x)] = \cos(2x)ddx[sin(2x)]=2cos(2x)\frac{d}{dx}[\sin(2x)] = 2\cos(2x)

Mistake 4: Confusing Notation

Remember: sin2x=(sinx)2\sin^2 x = (\sin x)^2, not sin(sinx)\sin(\sin x)


Derivatives in Radians

IMPORTANT: All trig derivatives assume angles are measured in radians, not degrees!

If working in degrees, you need conversion factors. But on the AP Calculus exam, always use radians.


📝 Practice Tips

  1. Memorize the six basic trig derivatives - you'll use them constantly
  2. Remember the co-function negative sign rule
  3. Always use the Chain Rule when the inside is not just xx
  4. Rewrite powers of trig functions: sin2x=(sinx)2\sin^2 x = (\sin x)^2
  5. Check your work by looking at the signs

📚 Practice Problems

1Problem 1medium

Question:

Find the derivative of f(x)=x2sinxf(x) = x^2 \sin x.

💡 Show Solution

This requires the Product Rule combined with trig derivatives.


Step 1: Identify the product

u=x2u = x^2 and v=sinxv = \sin x


Step 2: Find the derivatives

u=2xu' = 2x

v=cosxv' = \cos x


Step 3: Apply the Product Rule

f(x)=uv+uvf'(x) = u'v + uv'

f(x)=(2x)(sinx)+(x2)(cosx)f'(x) = (2x)(\sin x) + (x^2)(\cos x)

f(x)=2xsinx+x2cosxf'(x) = 2x\sin x + x^2\cos x

Answer: f(x)=2xsinx+x2cosxf'(x) = 2x\sin x + x^2\cos x

2Problem 2hard

Question:

Find dydx\frac{dy}{dx} if y=sin4(2x)y = \sin^4(2x).

💡 Show Solution

This requires the Chain Rule twice (double chain rule).


Step 1: Rewrite the function

y=[sin(2x)]4y = [\sin(2x)]^4

This has three layers:

  1. Outside: 4th power
  2. Middle: sine function
  3. Inside: 2x2x

Step 2: Derivative of the 4th power

dydx=4[sin(2x)]3ddx[sin(2x)]\frac{dy}{dx} = 4[\sin(2x)]^3 \cdot \frac{d}{dx}[\sin(2x)]


Step 3: Derivative of sine (with Chain Rule)

ddx[sin(2x)]=cos(2x)2=2cos(2x)\frac{d}{dx}[\sin(2x)] = \cos(2x) \cdot 2 = 2\cos(2x)


Step 4: Combine everything

dydx=4[sin(2x)]32cos(2x)\frac{dy}{dx} = 4[\sin(2x)]^3 \cdot 2\cos(2x)

=8sin3(2x)cos(2x)= 8\sin^3(2x)\cos(2x)

Answer: dydx=8sin3(2x)cos(2x)\displaystyle\frac{dy}{dx} = 8\sin^3(2x)\cos(2x)

3Problem 3medium

Question:

Find the equation of the tangent line to y=cosxy = \cos x at x=π3x = \frac{\pi}{3}.

💡 Show Solution

Step 1: Find the derivative

dydx=sinx\frac{dy}{dx} = -\sin x


Step 2: Evaluate the derivative at x=π3x = \frac{\pi}{3}

This gives us the slope of the tangent line:

m=sin(π3)=32m = -\sin\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}


Step 3: Find the y-coordinate

y=cos(π3)=12y = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}

So the point is (π3,12)\left(\frac{\pi}{3}, \frac{1}{2}\right)


Step 4: Use point-slope form

yy1=m(xx1)y - y_1 = m(x - x_1)

y12=32(xπ3)y - \frac{1}{2} = -\frac{\sqrt{3}}{2}\left(x - \frac{\pi}{3}\right)

y=32x+3π6+12y = -\frac{\sqrt{3}}{2}x + \frac{\sqrt{3}\pi}{6} + \frac{1}{2}

Answer: y=32x+3π6+12y = -\frac{\sqrt{3}}{2}x + \frac{\sqrt{3}\pi}{6} + \frac{1}{2}

(Or in point-slope form): y12=32(xπ3)y - \frac{1}{2} = -\frac{\sqrt{3}}{2}\left(x - \frac{\pi}{3}\right)