Definite Integrals and the Fundamental Theorem

The connection between derivatives and integrals

🎯 Definite Integrals and the Fundamental Theorem

The Definite Integral

The definite integral represents the exact area under a curve from x=ax = a to x=bx = b:

abf(x)dx=limni=1nf(xi)Δx\int_a^b f(x)\,dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x

💡 Key Idea: The definite integral is the limit of Riemann sums as the number of rectangles approaches infinity!


Notation

abf(x)dx\int_a^b f(x)\,dx

Components:

  • \int - integral symbol
  • aa - lower limit of integration
  • bb - upper limit of integration
  • f(x)f(x) - integrand
  • dxdx - with respect to xx

Read as: "The integral from aa to bb of f(x)f(x) with respect to xx"


Definite vs Indefinite Integrals

Indefinite Integral

f(x)dx=F(x)+C\int f(x)\,dx = F(x) + C

  • No limits
  • Result is a function (family of antiderivatives)
  • Includes +C+C

Definite Integral

abf(x)dx=number\int_a^b f(x)\,dx = \text{number}

  • Has limits aa and bb
  • Result is a number (area)
  • No +C+C needed

The Fundamental Theorem of Calculus

This is one of the most important theorems in all of mathematics! It connects derivatives and integrals.

Part 1 (FTC1)

If ff is continuous on [a,b][a, b] and FF is any antiderivative of ff, then:

abf(x)dx=F(b)F(a)\int_a^b f(x)\,dx = F(b) - F(a)

In words: To evaluate a definite integral, find an antiderivative, then subtract its values at the endpoints!


Notation for FTC1

We write F(x)abF(x)\Big|_a^b or [F(x)]ab[F(x)]_a^b to mean F(b)F(a)F(b) - F(a)

Example: [x33]02=233033=830=83\left[\frac{x^3}{3}\right]_0^2 = \frac{2^3}{3} - \frac{0^3}{3} = \frac{8}{3} - 0 = \frac{8}{3}


Using FTC to Evaluate Integrals

Step-by-Step Process

Step 1: Find an antiderivative F(x)F(x) of f(x)f(x)

(Don't include +C+C for definite integrals!)

Step 2: Evaluate F(b)F(b) and F(a)F(a)

Step 3: Subtract: F(b)F(a)F(b) - F(a)


Example 1: Basic Application

Evaluate 02x2dx\int_0^2 x^2\,dx

Step 1: Find antiderivative

F(x)=x33F(x) = \frac{x^3}{3}


Step 2: Apply FTC

02x2dx=[x33]02\int_0^2 x^2\,dx = \left[\frac{x^3}{3}\right]_0^2

=233033= \frac{2^3}{3} - \frac{0^3}{3}

=830=83= \frac{8}{3} - 0 = \frac{8}{3}

Answer: 83\frac{8}{3} square units


Example 2: With Multiple Terms

Evaluate 13(2x+1)dx\int_1^3 (2x + 1)\,dx

Step 1: Find antiderivative

F(x)=x2+xF(x) = x^2 + x


Step 2: Apply FTC

13(2x+1)dx=[x2+x]13\int_1^3 (2x+1)\,dx = [x^2 + x]_1^3

=(32+3)(12+1)= (3^2 + 3) - (1^2 + 1)

=(9+3)(1+1)= (9 + 3) - (1 + 1)

=122=10= 12 - 2 = 10

Answer: 1010 square units


Example 3: Trigonometric

Evaluate 0πsinxdx\int_0^{\pi} \sin x\,dx

Step 1: Find antiderivative

F(x)=cosxF(x) = -\cos x


Step 2: Apply FTC

0πsinxdx=[cosx]0π\int_0^{\pi} \sin x\,dx = [-\cos x]_0^{\pi}

=cos(π)(cos(0))= -\cos(\pi) - (-\cos(0))

=(1)(1)= -(-1) - (-1)

=1+1=2= 1 + 1 = 2

Answer: 22 square units


Properties of Definite Integrals

Property 1: Constant Multiple

abkf(x)dx=kabf(x)dx\int_a^b k \cdot f(x)\,dx = k\int_a^b f(x)\,dx


Property 2: Sum/Difference

ab[f(x)±g(x)]dx=abf(x)dx±abg(x)dx\int_a^b [f(x) \pm g(x)]\,dx = \int_a^b f(x)\,dx \pm \int_a^b g(x)\,dx


Property 3: Reversing Limits

abf(x)dx=baf(x)dx\int_a^b f(x)\,dx = -\int_b^a f(x)\,dx

Swapping limits changes the sign!


Property 4: Zero Width

aaf(x)dx=0\int_a^a f(x)\,dx = 0

No area when limits are the same!


Property 5: Additivity

abf(x)dx+bcf(x)dx=acf(x)dx\int_a^b f(x)\,dx + \int_b^c f(x)\,dx = \int_a^c f(x)\,dx

You can split integrals at any point!


Example 4: Using Properties

Given 02f(x)dx=5\int_0^2 f(x)\,dx = 5 and 24f(x)dx=3\int_2^4 f(x)\,dx = 3, find 04f(x)dx\int_0^4 f(x)\,dx.

Solution:

Using additivity property:

04f(x)dx=02f(x)dx+24f(x)dx\int_0^4 f(x)\,dx = \int_0^2 f(x)\,dx + \int_2^4 f(x)\,dx

=5+3=8= 5 + 3 = 8


Area and Signed Area

Signed Area

The definite integral gives signed area:

  • Area above the x-axis: positive
  • Area below the x-axis: negative

Example: Area Below Axis

02πsinxdx=[cosx]02π=cos(2π)+cos(0)=1+1=0\int_0^{2\pi} \sin x\,dx = [-\cos x]_0^{2\pi} = -\cos(2\pi) + \cos(0) = -1 + 1 = 0

Why zero? Because area above axis (0 to π\pi) cancels area below axis (π\pi to 2π2\pi)!


Finding Total Area

To find total area (all positive), split at x-intercepts:

Total Area=0πsinxdx+π2πsinxdx\text{Total Area} = \int_0^{\pi} \sin x\,dx + \left|\int_{\pi}^{2\pi} \sin x\,dx\right|

=2+2=2+2=4= 2 + |-2| = 2 + 2 = 4


The Second Part of FTC

FTC Part 2

If ff is continuous on [a,b][a, b], then:

ddx[axf(t)dt]=f(x)\frac{d}{dx}\left[\int_a^x f(t)\,dt\right] = f(x)

In words: The derivative of an integral with respect to its upper limit is the integrand!

This shows that differentiation and integration are inverse operations!


Example 5: Using FTC Part 2

Find ddx[0xt2dt]\frac{d}{dx}\left[\int_0^x t^2\,dt\right]

Solution:

By FTC Part 2: ddx[0xt2dt]=x2\frac{d}{dx}\left[\int_0^x t^2\,dt\right] = x^2


Verification: Do it the long way:

0xt2dt=[t33]0x=x330=x33\int_0^x t^2\,dt = \left[\frac{t^3}{3}\right]_0^x = \frac{x^3}{3} - 0 = \frac{x^3}{3}

ddx[x33]=3x23=x2\frac{d}{dx}\left[\frac{x^3}{3}\right] = \frac{3x^2}{3} = x^2


Example 6: With Chain Rule

Find ddx[0x2sintdt]\frac{d}{dx}\left[\int_0^{x^2} \sin t\,dt\right]

Solution:

Upper limit is x2x^2, not just xx. Need chain rule!

Let u=x2u = x^2, then by FTC Part 2 and chain rule:

ddx[0x2sintdt]=sin(x2)ddx[x2]\frac{d}{dx}\left[\int_0^{x^2} \sin t\,dt\right] = \sin(x^2) \cdot \frac{d}{dx}[x^2]

=sin(x2)2x=2xsin(x2)= \sin(x^2) \cdot 2x = 2x\sin(x^2)


Average Value of a Function

The average value of ff on [a,b][a, b] is:

favg=1baabf(x)dxf_{\text{avg}} = \frac{1}{b-a}\int_a^b f(x)\,dx

Think: Total area divided by width = average height


Example 7: Average Value

Find the average value of f(x)=x2f(x) = x^2 on [0,3][0, 3].

Solution:

favg=13003x2dxf_{\text{avg}} = \frac{1}{3-0}\int_0^3 x^2\,dx

=13[x33]03= \frac{1}{3}\left[\frac{x^3}{3}\right]_0^3

=13273=139=3= \frac{1}{3} \cdot \frac{27}{3} = \frac{1}{3} \cdot 9 = 3

Answer: The average value is 33.


Mean Value Theorem for Integrals

If ff is continuous on [a,b][a, b], there exists cc in [a,b][a, b] such that:

abf(x)dx=f(c)(ba)\int_a^b f(x)\,dx = f(c)(b-a)

In words: There's a point where the function equals its average value!

f(c)=1baabf(x)dx=favgf(c) = \frac{1}{b-a}\int_a^b f(x)\,dx = f_{\text{avg}}


⚠️ Common Mistakes

Mistake 1: Including +C

WRONG: 02x2dx=x33+C02\int_0^2 x^2\,dx = \frac{x^3}{3} + C\Big|_0^2

RIGHT: 02x2dx=x3302\int_0^2 x^2\,dx = \frac{x^3}{3}\Big|_0^2

Definite integrals are numbers, no +C needed!


Mistake 2: Wrong Order of Subtraction

WRONG: F(a)F(b)F(a) - F(b)

RIGHT: F(b)F(a)F(b) - F(a) (upper minus lower!)


Mistake 3: Forgetting Negative Areas

If the function dips below the x-axis, the integral can be negative!

For total area, use absolute values or split at zeros.


Mistake 4: Wrong Variable in FTC Part 2

ddx[axf(t)dt]=f(x)\frac{d}{dx}\left[\int_a^x f(t)\,dt\right] = f(x)

Not f(t)f(t)! The answer is in terms of xx (the upper limit).


Why FTC is Profound

The Fundamental Theorem of Calculus reveals:

Differentiation and Integration are inverse operations!

  • Integration "undoes" differentiation
  • Differentiation "undoes" integration

This connects two seemingly different problems:

  • Area problem (integration)
  • Tangent problem (differentiation)

📝 Practice Strategy

  1. For evaluation: Find antiderivative, evaluate at limits, subtract
  2. Don't include +C for definite integrals
  3. Remember: F(b)F(a)F(b) - F(a) (upper minus lower)
  4. Check limits: Is the answer positive/negative as expected?
  5. For FTC Part 2: Derivative of integral = integrand (watch for chain rule)
  6. For average value: 1baabf(x)dx\frac{1}{b-a}\int_a^b f(x)\,dx
  7. For total area: Split at zeros if function crosses x-axis

📚 Practice Problems

1Problem 1medium

Question:

Evaluate the following definite integrals:

a) 13(2x+1)dx\int_1^3 (2x + 1) \, dx b) 0π/2cosxdx\int_0^{\pi/2} \cos x \, dx

💡 Show Solution

Solution:

Part (a): Find the antiderivative, then apply FTC:

(2x+1)dx=x2+x+C\int (2x + 1) \, dx = x^2 + x + C

Fundamental Theorem of Calculus:

13(2x+1)dx=[x2+x]13\int_1^3 (2x + 1) \, dx = [x^2 + x]_1^3

=(32+3)(12+1)= (3^2 + 3) - (1^2 + 1)

=122=10= 12 - 2 = 10

Part (b): Antiderivative of cosx\cos x is sinx\sin x:

0π/2cosxdx=[sinx]0π/2\int_0^{\pi/2} \cos x \, dx = [\sin x]_0^{\pi/2}

=sin(π/2)sin(0)= \sin(\pi/2) - \sin(0)

=10=1= 1 - 0 = 1

2Problem 2medium

Question:

Evaluate 14(3x2x2)dx\int_1^4 (3\sqrt{x} - \frac{2}{x^2})\,dx.

💡 Show Solution

Step 1: Rewrite using exponents

14(3x1/22x2)dx\int_1^4 (3x^{1/2} - 2x^{-2})\,dx


Step 2: Find antiderivative

For 3x1/23x^{1/2}: 3x3/23/2=32x3/23=2x3/23 \cdot \frac{x^{3/2}}{3/2} = 3 \cdot \frac{2x^{3/2}}{3} = 2x^{3/2}

For 2x2-2x^{-2}: 2x11=2x1=2x-2 \cdot \frac{x^{-1}}{-1} = 2x^{-1} = \frac{2}{x}

F(x)=2x3/2+2xF(x) = 2x^{3/2} + \frac{2}{x}


Step 3: Apply FTC

14(3x2x2)dx=[2x3/2+2x]14\int_1^4 (3\sqrt{x} - \frac{2}{x^2})\,dx = \left[2x^{3/2} + \frac{2}{x}\right]_1^4


Step 4: Evaluate at upper limit (x=4x=4)

F(4)=2(4)3/2+24=2(8)+0.5=16+0.5=16.5F(4) = 2(4)^{3/2} + \frac{2}{4} = 2(8) + 0.5 = 16 + 0.5 = 16.5


Step 5: Evaluate at lower limit (x=1x=1)

F(1)=2(1)3/2+21=2(1)+2=4F(1) = 2(1)^{3/2} + \frac{2}{1} = 2(1) + 2 = 4


Step 6: Subtract

F(4)F(1)=16.54=12.5F(4) - F(1) = 16.5 - 4 = 12.5

Answer: 252\frac{25}{2} or 12.512.5

3Problem 3medium

Question:

Evaluate the following definite integrals:

a) 13(2x+1)dx\int_1^3 (2x + 1) \, dx b) 0π/2cosxdx\int_0^{\pi/2} \cos x \, dx

💡 Show Solution

Solution:

Part (a): Find the antiderivative, then apply FTC:

(2x+1)dx=x2+x+C\int (2x + 1) \, dx = x^2 + x + C

Fundamental Theorem of Calculus:

13(2x+1)dx=[x2+x]13\int_1^3 (2x + 1) \, dx = [x^2 + x]_1^3

=(32+3)(12+1)= (3^2 + 3) - (1^2 + 1)

=122=10= 12 - 2 = 10

Part (b): Antiderivative of cosx\cos x is sinx\sin x:

0π/2cosxdx=[sinx]0π/2\int_0^{\pi/2} \cos x \, dx = [\sin x]_0^{\pi/2}

=sin(π/2)sin(0)= \sin(\pi/2) - \sin(0)

=10=1= 1 - 0 = 1

4Problem 4hard

Question:

Evaluate 12xdx\int_{-1}^2 |x| \, dx.

💡 Show Solution

Solution:

The absolute value function changes at x=0x = 0:

x={xif x<0xif x0|x| = \begin{cases} -x & \text{if } x < 0 \\ x & \text{if } x \geq 0 \end{cases}

Split the integral:

12xdx=10(x)dx+02xdx\int_{-1}^2 |x| \, dx = \int_{-1}^0 (-x) \, dx + \int_0^2 x \, dx

First integral:

10(x)dx=[x22]10=0(12)=12\int_{-1}^0 (-x) \, dx = \left[-\frac{x^2}{2}\right]_{-1}^0 = 0 - \left(-\frac{1}{2}\right) = \frac{1}{2}

Second integral:

02xdx=[x22]02=420=2\int_0^2 x \, dx = \left[\frac{x^2}{2}\right]_0^2 = \frac{4}{2} - 0 = 2

Total:

12xdx=12+2=52\int_{-1}^2 |x| \, dx = \frac{1}{2} + 2 = \frac{5}{2}

5Problem 5hard

Question:

Evaluate 12xdx\int_{-1}^2 |x| \, dx.

💡 Show Solution

Solution:

The absolute value function changes at x=0x = 0:

x={xif x<0xif x0|x| = \begin{cases} -x & \text{if } x < 0 \\ x & \text{if } x \geq 0 \end{cases}

Split the integral:

12xdx=10(x)dx+02xdx\int_{-1}^2 |x| \, dx = \int_{-1}^0 (-x) \, dx + \int_0^2 x \, dx

First integral:

10(x)dx=[x22]10=0(12)=12\int_{-1}^0 (-x) \, dx = \left[-\frac{x^2}{2}\right]_{-1}^0 = 0 - \left(-\frac{1}{2}\right) = \frac{1}{2}

Second integral:

02xdx=[x22]02=420=2\int_0^2 x \, dx = \left[\frac{x^2}{2}\right]_0^2 = \frac{4}{2} - 0 = 2

Total:

12xdx=12+2=52\int_{-1}^2 |x| \, dx = \frac{1}{2} + 2 = \frac{5}{2}

6Problem 6easy

Question:

Given 13f(x)dx=7\int_1^3 f(x)\,dx = 7 and 35f(x)dx=2\int_3^5 f(x)\,dx = -2, find 15f(x)dx\int_1^5 f(x)\,dx and 51f(x)dx\int_5^1 f(x)\,dx.

💡 Show Solution

Part 1: Find 15f(x)dx\int_1^5 f(x)\,dx

Use the additivity property:

15f(x)dx=13f(x)dx+35f(x)dx\int_1^5 f(x)\,dx = \int_1^3 f(x)\,dx + \int_3^5 f(x)\,dx

=7+(2)=5= 7 + (-2) = 5


Part 2: Find 51f(x)dx\int_5^1 f(x)\,dx

Use the property that reversing limits changes the sign:

51f(x)dx=15f(x)dx\int_5^1 f(x)\,dx = -\int_1^5 f(x)\,dx

=5= -5


Answers:

  • 15f(x)dx=5\int_1^5 f(x)\,dx = 5
  • 51f(x)dx=5\int_5^1 f(x)\,dx = -5

7Problem 7hard

Question:

Find ddx[2x31+t4dt]\frac{d}{dx}\left[\int_2^{x^3} \sqrt{1+t^4}\,dt\right].

💡 Show Solution

Solution using FTC Part 2 with Chain Rule

The upper limit is u=x3u = x^3 (not just xx), so we need the chain rule!


Step 1: Apply FTC Part 2

By the Fundamental Theorem Part 2:

ddx[2x31+t4dt]=1+(x3)4ddx[x3]\frac{d}{dx}\left[\int_2^{x^3} \sqrt{1+t^4}\,dt\right] = \sqrt{1+(x^3)^4} \cdot \frac{d}{dx}[x^3]


Step 2: Simplify

=1+x123x2= \sqrt{1+x^{12}} \cdot 3x^2

=3x21+x12= 3x^2\sqrt{1+x^{12}}


Answer: 3x21+x123x^2\sqrt{1+x^{12}}

Key idea: When the upper limit is a function of xx (not just xx), multiply by the derivative of that function (chain rule)!