Constant Multiple and Sum Rules

Essential rules for differentiating linear combinations of functions

Constant Multiple and Sum/Difference Rules

These rules let us differentiate polynomials and combinations of functions easily!

The Constant Multiple Rule

ddx[cf(x)]=cddx[f(x)]=cf(x)\frac{d}{dx}[c \cdot f(x)] = c \cdot \frac{d}{dx}[f(x)] = c \cdot f'(x)

You can pull constants out front when differentiating!

Examples of Constant Multiple Rule

Example 1: ddx[5x3]\frac{d}{dx}[5x^3]

Pull out the 5: =5ddx[x3]=53x2=15x2= 5 \cdot \frac{d}{dx}[x^3] = 5 \cdot 3x^2 = 15x^2

Example 2: ddx[2x4]\frac{d}{dx}[-2x^4]

Pull out the -2: =2ddx[x4]=24x3=8x3= -2 \cdot \frac{d}{dx}[x^4] = -2 \cdot 4x^3 = -8x^3

Example 3: ddx[34x2]\frac{d}{dx}\left[\frac{3}{4}x^2\right]

=34ddx[x2]=342x=3x2= \frac{3}{4} \cdot \frac{d}{dx}[x^2] = \frac{3}{4} \cdot 2x = \frac{3x}{2}

The Sum Rule

ddx[f(x)+g(x)]=ddx[f(x)]+ddx[g(x)]=f(x)+g(x)\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)] = f'(x) + g'(x)

Differentiate term by term!

The Difference Rule

ddx[f(x)g(x)]=ddx[f(x)]ddx[g(x)]=f(x)g(x)\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)] = f'(x) - g'(x)

Same as the sum rule, but with subtraction!

Examples of Sum/Difference Rules

Example 1: ddx[x3+x2]\frac{d}{dx}[x^3 + x^2]

Differentiate each term: =ddx[x3]+ddx[x2]=3x2+2x= \frac{d}{dx}[x^3] + \frac{d}{dx}[x^2] = 3x^2 + 2x

Example 2: ddx[x5x3+x]\frac{d}{dx}[x^5 - x^3 + x]

=ddx[x5]ddx[x3]+ddx[x]= \frac{d}{dx}[x^5] - \frac{d}{dx}[x^3] + \frac{d}{dx}[x] =5x43x2+1= 5x^4 - 3x^2 + 1

Example 3: ddx[2x4+3x27]\frac{d}{dx}[2x^4 + 3x^2 - 7]

=24x3+32x0= 2 \cdot 4x^3 + 3 \cdot 2x - 0 =8x3+6x= 8x^3 + 6x

Combining All the Rules

For polynomials, we use all three rules together!

General polynomial: ddx[anxn+an1xn1+...+a1x+a0]\frac{d}{dx}[a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0]

=nanxn1+(n1)an1xn2+...+a1= na_nx^{n-1} + (n-1)a_{n-1}x^{n-2} + ... + a_1

Step-by-Step Process

Find the derivative of: f(x)=4x53x3+7x2f(x) = 4x^5 - 3x^3 + 7x - 2

Step 1: Differentiate each term separately

  • ddx[4x5]=45x4=20x4\frac{d}{dx}[4x^5] = 4 \cdot 5x^4 = 20x^4
  • ddx[3x3]=33x2=9x2\frac{d}{dx}[-3x^3] = -3 \cdot 3x^2 = -9x^2
  • ddx[7x]=71=7\frac{d}{dx}[7x] = 7 \cdot 1 = 7
  • ddx[2]=0\frac{d}{dx}[-2] = 0

Step 2: Combine them f(x)=20x49x2+7f'(x) = 20x^4 - 9x^2 + 7

Why These Rules Work

Constant Multiple: Constants are just scaling factors. The rate of change gets scaled too!

Sum/Difference: Rates of change add/subtract independently. If one quantity increases at rate a and another at rate b, the total increases at rate a + b.

Extended to More Terms

These rules work for any number of terms:

ddx[f1+f2+f3+...+fn]=f1+f2+f3+...+fn\frac{d}{dx}[f_1 + f_2 + f_3 + ... + f_n] = f_1' + f_2' + f_3' + ... + f_n'

Important Note

These rules apply to sums and differences, NOT products or quotients!

Wrong: ddx[fg]fg\frac{d}{dx}[f \cdot g] \neq f' \cdot g'

We need special rules for products and quotients (coming next)!

Common Patterns

| Function | Derivative | |----------|------------| | xnx^n | nxn1nx^{n-1} | | cxncx^n | cnxn1cnx^{n-1} | | xn+xmx^n + x^m | nxn1+mxm1nx^{n-1} + mx^{m-1} | | ax2+bx+cax^2 + bx + c | 2ax+b2ax + b |

Practice Tips

  1. Handle each term independently
  2. Pull out constants first
  3. Apply power rule to each term
  4. Remember: derivative of constant = 0
  5. Combine all the results

📚 Practice Problems

1Problem 1easy

Question:

Find the derivative of f(x) = 3x² - 5x + 7

💡 Show Solution

Differentiate term by term:

First term: ddx[3x2]\frac{d}{dx}[3x^2] =32x=6x= 3 \cdot 2x = 6x

Second term: ddx[5x]\frac{d}{dx}[-5x] =51=5= -5 \cdot 1 = -5

Third term: ddx[7]\frac{d}{dx}[7] =0= 0 (constant)

Combine: f(x)=6x5f'(x) = 6x - 5

Answer: f'(x) = 6x - 5

2Problem 2medium

Question:

Find dy/dx if y = 2x⁴ - 3x³ + x² - 8x + 12

💡 Show Solution

Differentiate each term:

dydx=ddx[2x4]ddx[3x3]+ddx[x2]ddx[8x]+ddx[12]\frac{dy}{dx} = \frac{d}{dx}[2x^4] - \frac{d}{dx}[3x^3] + \frac{d}{dx}[x^2] - \frac{d}{dx}[8x] + \frac{d}{dx}[12]

Calculate each:

  • ddx[2x4]=24x3=8x3\frac{d}{dx}[2x^4] = 2 \cdot 4x^3 = 8x^3
  • ddx[3x3]=33x2=9x2\frac{d}{dx}[3x^3] = 3 \cdot 3x^2 = 9x^2
  • ddx[x2]=2x\frac{d}{dx}[x^2] = 2x
  • ddx[8x]=8\frac{d}{dx}[8x] = 8
  • ddx[12]=0\frac{d}{dx}[12] = 0

Combine: dydx=8x39x2+2x8\frac{dy}{dx} = 8x^3 - 9x^2 + 2x - 8

Answer: dy/dx = 8x³ - 9x² + 2x - 8

3Problem 3hard

Question:

Find the derivative of g(x) = 5√x - 2/x + 4

💡 Show Solution

First, rewrite using exponents:

g(x)=5x1/22x1+4g(x) = 5x^{1/2} - 2x^{-1} + 4

Now differentiate term by term:

First term: ddx[5x1/2]\frac{d}{dx}[5x^{1/2}] =512x1/2=52x1/2=52x= 5 \cdot \frac{1}{2}x^{-1/2} = \frac{5}{2}x^{-1/2} = \frac{5}{2\sqrt{x}}

Second term: ddx[2x1]\frac{d}{dx}[-2x^{-1}] =2(1)x2=2x2=2x2= -2 \cdot (-1)x^{-2} = 2x^{-2} = \frac{2}{x^2}

Third term: ddx[4]=0\frac{d}{dx}[4] = 0

Combine: g(x)=52x+2x2g'(x) = \frac{5}{2\sqrt{x}} + \frac{2}{x^2}

Or in exponent form: g(x)=52x1/2+2x2g'(x) = \frac{5}{2}x^{-1/2} + 2x^{-2}

Answer: g'(x) = 5/(2√x) + 2/x²