Common Taylor Series and Applications

Key series formulas and how to use them

🎯 Common Taylor Series and Applications

Essential Maclaurin Series Reference

1. Exponential Function

ex=n=0xnn!=1+x+x22!+x33!+x44!+e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots

Interval: (,)(-\infty, \infty)

Radius: R=R = \infty


2. Sine Function

sinx=n=0(1)nx2n+1(2n+1)!=xx33!+x55!x77!+\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots

Interval: (,)(-\infty, \infty)

Only odd powers!


3. Cosine Function

cosx=n=0(1)nx2n(2n)!=1x22!+x44!x66!+\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots

Interval: (,)(-\infty, \infty)

Only even powers!


4. Geometric Series

11x=n=0xn=1+x+x2+x3+x4+\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 + \cdots

Interval: (1,1)(-1, 1)

Most versatile for substitutions!


5. Natural Logarithm

ln(1+x)=n=1(1)n1xnn=xx22+x33x44+\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots

Interval: (1,1](-1, 1] (includes 1!)


6. Binomial Series (General)

(1+x)p=1+px+p(p1)2!x2+p(p1)(p2)3!x3+(1+x)^p = 1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \cdots

Interval: (1,1)(-1, 1) when pp is not a positive integer

When pp is a positive integer, this is a finite polynomial (binomial theorem).


Application 1: Approximating Functions

Example: Approximate sin(0.1)\sin(0.1) using the first three terms.

sinxxx36\sin x \approx x - \frac{x^3}{6}

sin(0.1)0.1(0.1)36=0.10.0016\sin(0.1) \approx 0.1 - \frac{(0.1)^3}{6} = 0.1 - \frac{0.001}{6}

0.10.000167=0.099833\approx 0.1 - 0.000167 = 0.099833

Actual value: sin(0.1)0.0998334...\sin(0.1) \approx 0.0998334...

Very close! ✓


Application 2: Evaluating Limits

Example: Find limx0ex1xx2\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}

Substitute series for exe^x:

ex=1+x+x22!+x33!+e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots

ex1x=x22!+x33!+x44!+e^x - 1 - x = \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots


ex1xx2=x22+x36+x424+x2\frac{e^x - 1 - x}{x^2} = \frac{\frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots}{x^2}

=12+x6+x224+= \frac{1}{2} + \frac{x}{6} + \frac{x^2}{24} + \cdots

As x0x \to 0:

limx0ex1xx2=12\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2}

No L'Hôpital's needed!


Application 3: Finding Derivatives at a Point

Example: Find f(10)(0)f^{(10)}(0) if f(x)=x2e3xf(x) = x^2 e^{3x}.

Step 1: Find Maclaurin series for f(x)f(x)

e3x=n=0(3x)nn!=1+3x+9x22+27x36+e^{3x} = \sum_{n=0}^{\infty} \frac{(3x)^n}{n!} = 1 + 3x + \frac{9x^2}{2} + \frac{27x^3}{6} + \cdots

x2e3x=x2(1+3x+9x22+9x32+)x^2 e^{3x} = x^2\left(1 + 3x + \frac{9x^2}{2} + \frac{9x^3}{2} + \cdots\right)

=x2+3x3+9x42+9x52+= x^2 + 3x^3 + \frac{9x^4}{2} + \frac{9x^5}{2} + \cdots


Step 2: General term has form f(n)(0)n!xn\frac{f^{(n)}(0)}{n!}x^n

The coefficient of x10x^{10} is f(10)(0)10!\frac{f^{(10)}(0)}{10!}.

From x2e3x=x2n=03nxnn!=n=03nxn+2n!x^2 e^{3x} = x^2 \sum_{n=0}^{\infty} \frac{3^n x^n}{n!} = \sum_{n=0}^{\infty} \frac{3^n x^{n+2}}{n!}

For x10x^{10} term: n+2=10n + 2 = 10, so n=8n = 8.

Coefficient: 388!\frac{3^8}{8!}


f(10)(0)10!=388!\frac{f^{(10)}(0)}{10!} = \frac{3^8}{8!}

f(10)(0)=3810!8!=38109=3890f^{(10)}(0) = \frac{3^8 \cdot 10!}{8!} = 3^8 \cdot 10 \cdot 9 = 3^8 \cdot 90

=656190=590,490= 6561 \cdot 90 = 590,490


Application 4: Integrating Non-Elementary Functions

Example: Express 01sinxxdx\int_0^1 \frac{\sin x}{x} dx as an infinite series.

Step 1: Write series for sinx\sin x

sinx=xx33!+x55!x77!+\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots


Step 2: Divide by xx

sinxx=1x23!+x45!x67!+\frac{\sin x}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots


Step 3: Integrate from 0 to 1

01sinxxdx=01(1x26+x4120x65040+)dx\int_0^1 \frac{\sin x}{x} dx = \int_0^1 \left(1 - \frac{x^2}{6} + \frac{x^4}{120} - \frac{x^6}{5040} + \cdots\right) dx

=[xx318+x5600x735280+]01= \left[x - \frac{x^3}{18} + \frac{x^5}{600} - \frac{x^7}{35280} + \cdots\right]_0^1

=1118+1600135280+= 1 - \frac{1}{18} + \frac{1}{600} - \frac{1}{35280} + \cdots

0.9461\approx 0.9461 (using first 4 terms)


Substitution Techniques

Example 5: Find series for 11+x2\frac{1}{1+x^2}

Start with: 11u=n=0un\frac{1}{1-u} = \sum_{n=0}^{\infty} u^n

Substitute u=x2u = -x^2:

11+x2=11(x2)=n=0(x2)n\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n

=n=0(1)nx2n= \sum_{n=0}^{\infty} (-1)^n x^{2n}

=1x2+x4x6+x8= 1 - x^2 + x^4 - x^6 + x^8 - \cdots

Interval: x<1|x| < 1


Example 6: Find series for arctanx\arctan x

From Example 5: 11+x2=1x2+x4x6+\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \cdots

We know: ddx[arctanx]=11+x2\frac{d}{dx}[\arctan x] = \frac{1}{1+x^2}

Integrate both sides:

arctanx=(1x2+x4x6+)dx\arctan x = \int \left(1 - x^2 + x^4 - x^6 + \cdots\right) dx

=C+xx33+x55x77+= C + x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots


At x=0x = 0: arctan0=0\arctan 0 = 0, so C=0C = 0.

arctanx=n=0(1)nx2n+12n+1\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}

=xx33+x55x77+= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots

Interval: [1,1][-1, 1]


Fun Application: Approximating π\pi

From arctanx=xx33+x55\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots

At x=1x = 1: arctan1=π4\arctan 1 = \frac{\pi}{4}

π4=113+1517+19\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots

π=4(113+1517+19)\pi = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots\right)

(This converges very slowly, but it's a cool formula!)


Differentiation Example

Example 7: Find series for 1(1x)2\frac{1}{(1-x)^2}

Method 1: Differentiate 11x\frac{1}{1-x}

ddx[11x]=1(1x)2\frac{d}{dx}\left[\frac{1}{1-x}\right] = \frac{1}{(1-x)^2}

ddx[n=0xn]=n=1nxn1\frac{d}{dx}\left[\sum_{n=0}^{\infty} x^n\right] = \sum_{n=1}^{\infty} n x^{n-1}

1(1x)2=n=1nxn1=1+2x+3x2+4x3+\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} n x^{n-1} = 1 + 2x + 3x^2 + 4x^3 + \cdots

Or reindex: n=0(n+1)xn\sum_{n=0}^{\infty} (n+1)x^n


Multiplying Series

Example 8: Find first 3 terms of exsinxe^x \sin x

ex=1+x+x22+x36+e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots

sinx=xx36+\sin x = x - \frac{x^3}{6} + \cdots

Multiply:

(1+x+x22+x36+)(xx36+)(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots)(x - \frac{x^3}{6} + \cdots)


Constant term: None (since sinx\sin x starts with xx)

xx term: 1x=x1 \cdot x = x

x2x^2 term: xx=x2x \cdot x = x^2

x3x^3 term: x22x+1(x36)+x0=x32x36=x33\frac{x^2}{2} \cdot x + 1 \cdot (-\frac{x^3}{6}) + x \cdot 0 = \frac{x^3}{2} - \frac{x^3}{6} = \frac{x^3}{3}

exsinx=x+x2+x33+e^x \sin x = x + x^2 + \frac{x^3}{3} + \cdots


⚠️ Common Mistakes

Mistake 1: Wrong Interval After Substitution

For 11+x2\frac{1}{1+x^2} from 11u\frac{1}{1-u} with u=x2u = -x^2:

WRONG: Interval is still (1,1)(-1, 1)

RIGHT: Need u<1|u| < 1, so x2<1|-x^2| < 1, which means x<1|x| < 1 (still (1,1)(-1,1)!)

But if you substitute u=2xu = 2x, interval changes!


Mistake 2: Forgetting Integration Constant

When integrating series: cnxndx=C+cnxn+1n+1\int \sum c_n x^n dx = C + \sum \frac{c_n x^{n+1}}{n+1}

Must find CC using initial condition!


Mistake 3: Using Series Outside Interval of Convergence

ln(1+x)=xx22+\ln(1+x) = x - \frac{x^2}{2} + \cdots only for 1<x1-1 < x \leq 1

WRONG: ln3=242+83\ln 3 = 2 - \frac{4}{2} + \frac{8}{3} - \cdots (using x=2x = 2)

x=2x = 2 is outside the interval!


Mistake 4: Wrong Power After Substitution

For ex2e^{x^2} from ex=xnn!e^x = \sum \frac{x^n}{n!}:

WRONG: ex2=x2nn!e^{x^2} = \sum \frac{x^{2n}}{n!}

RIGHT: ex2=(x2)nn!=x2nn!e^{x^2} = \sum \frac{(x^2)^n}{n!} = \sum \frac{x^{2n}}{n!}

(In this case same answer, but be careful with the logic!)


📝 Practice Strategy

  1. Memorize the Big 5: ex,sinx,cosx,11x,ln(1+x)e^x, \sin x, \cos x, \frac{1}{1-x}, \ln(1+x)
  2. Know intervals: Most are (,)(-\infty, \infty) except geometric and log
  3. Substitution: Replace xx with anything, adjust interval
  4. Term by term operations: Valid within radius of convergence
  5. For limits: Expand both numerator and denominator
  6. For integrals: Integrate series term by term
  7. For derivatives at 0: Find coefficient of xnx^n in series
  8. Check first 3-4 terms: Usually sufficient for problems

📚 Practice Problems

1Problem 1medium

Question:

Find the Maclaurin series for f(x)=x1x2f(x) = \frac{x}{1-x^2} and determine its radius of convergence.

💡 Show Solution

Step 1: Use geometric series

11x2=n=0(x2)n=n=0x2n\frac{1}{1-x^2} = \sum_{n=0}^{\infty} (x^2)^n = \sum_{n=0}^{\infty} x^{2n}

=1+x2+x4+x6+x8+= 1 + x^2 + x^4 + x^6 + x^8 + \cdots

for x2<1|x^2| < 1, i.e., x<1|x| < 1.


Step 2: Multiply by xx

x1x2=xn=0x2n=n=0x2n+1\frac{x}{1-x^2} = x \cdot \sum_{n=0}^{\infty} x^{2n} = \sum_{n=0}^{\infty} x^{2n+1}

=x+x3+x5+x7+x9+= x + x^3 + x^5 + x^7 + x^9 + \cdots


Step 3: Radius of convergence

From geometric series with u=x2u = x^2:

Need u<1|u| < 1, so x2<1|x^2| < 1, which gives x<1|x| < 1.

Radius: R=1R = 1


Answer: x1x2=n=0x2n+1\frac{x}{1-x^2} = \sum_{n=0}^{\infty} x^{2n+1} for x<1|x| < 1, with R=1R = 1

2Problem 2hard

Question:

Evaluate limx0sinxx+x36x5\lim_{x \to 0} \frac{\sin x - x + \frac{x^3}{6}}{x^5} using Maclaurin series.

💡 Show Solution

Step 1: Write series for sinx\sin x

sinx=xx33!+x55!x77!+\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots

=xx36+x5120x75040+= x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \cdots


Step 2: Simplify numerator

sinxx+x36=(xx36+x5120)x+x36\sin x - x + \frac{x^3}{6} = \left(x - \frac{x^3}{6} + \frac{x^5}{120} - \cdots\right) - x + \frac{x^3}{6}

=x5120x75040+= \frac{x^5}{120} - \frac{x^7}{5040} + \cdots


Step 3: Divide by x5x^5

sinxx+x36x5=x5120x75040+x5\frac{\sin x - x + \frac{x^3}{6}}{x^5} = \frac{\frac{x^5}{120} - \frac{x^7}{5040} + \cdots}{x^5}

=1120x25040+= \frac{1}{120} - \frac{x^2}{5040} + \cdots


Step 4: Take limit

limx0(1120x25040+)=1120\lim_{x \to 0} \left(\frac{1}{120} - \frac{x^2}{5040} + \cdots\right) = \frac{1}{120}


Answer: 1120\frac{1}{120}

3Problem 3expert

Question:

Use series to approximate 00.5ex2dx\int_0^{0.5} e^{-x^2} dx to three decimal places.

💡 Show Solution

Step 1: Find series for ex2e^{-x^2}

ex=n=0xnn!e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}

Substitute xx2x \to -x^2:

ex2=n=0(x2)nn!=n=0(1)nx2nn!e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}

=1x2+x42!x63!+x84!= 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \cdots


Step 2: Integrate term by term

00.5ex2dx=00.5(1x2+x42x66+x824)dx\int_0^{0.5} e^{-x^2} dx = \int_0^{0.5} \left(1 - x^2 + \frac{x^4}{2} - \frac{x^6}{6} + \frac{x^8}{24} - \cdots\right) dx

=[xx33+x510x742+x9216]00.5= \left[x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42} + \frac{x^9}{216} - \cdots\right]_0^{0.5}


Step 3: Evaluate at x=0.5x = 0.5

=0.5(0.5)33+(0.5)510(0.5)742+(0.5)9216= 0.5 - \frac{(0.5)^3}{3} + \frac{(0.5)^5}{10} - \frac{(0.5)^7}{42} + \frac{(0.5)^9}{216} - \cdots

=0.50.1253+0.03125100.007812542+0.001953125216= 0.5 - \frac{0.125}{3} + \frac{0.03125}{10} - \frac{0.0078125}{42} + \frac{0.001953125}{216} - \cdots

=0.50.041667+0.0031250.000186+0.000009= 0.5 - 0.041667 + 0.003125 - 0.000186 + 0.000009 - \cdots


Step 4: Sum terms

0.50.041667+0.0031250.000186\approx 0.5 - 0.041667 + 0.003125 - 0.000186

0.461272\approx 0.461272

To three decimal places: 0.461


Answer: 00.5ex2dx0.461\int_0^{0.5} e^{-x^2} dx \approx 0.461