Alternating Series Test

Testing convergence of alternating series

🎯 Alternating Series Test

What is an Alternating Series?

An alternating series has terms that alternate in sign:

n=1(1)nanorn=1(1)n+1an\sum_{n=1}^{\infty} (-1)^n a_n \quad \text{or} \quad \sum_{n=1}^{\infty} (-1)^{n+1} a_n

where an>0a_n > 0.

Examples:

  • 112+1314+=(1)n+11n1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots = \sum (-1)^{n+1} \frac{1}{n} (alternating harmonic)
  • 1+1213+14=(1)n1n-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \cdots = \sum (-1)^n \frac{1}{n}

💡 Key Idea: Signs flip back and forth: positive, negative, positive, negative, ...


Alternating Series Test (AST)

The series (1)nan\sum (-1)^n a_n (or (1)n+1an\sum (-1)^{n+1} a_n) converges if:

  1. an>0a_n > 0 for all nn (terms are positive before adding the sign)
  2. anan+1a_n \geq a_{n+1} for all nNn \geq N (eventually decreasing)
  3. limnan=0\lim_{n \to \infty} a_n = 0 (terms approach 0)

🎯 Three conditions: positive, decreasing, limit is 0


Why It Works

The partial sums oscillate but get closer together:

S1=a1S_1 = a_1 S2=a1a2S_2 = a_1 - a_2 S3=a1a2+a3S_3 = a_1 - a_2 + a_3

Since ana_n is decreasing:

  • Adding positive term moves right (but less each time)
  • Subtracting negative term moves left (but less each time)

The partial sums converge to a limit!


Example 1: Alternating Harmonic Series

Test n=1(1)n+1n=112+1314+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots

Check conditions: Let an=1na_n = \frac{1}{n}

  1. an=1n>0a_n = \frac{1}{n} > 0 for all nn

  2. an=1na_n = \frac{1}{n} is decreasing (since 1n+1<1n\frac{1}{n+1} < \frac{1}{n})

  3. limn1n=0\lim_{n \to \infty} \frac{1}{n} = 0


Conclusion: By the Alternating Series Test, the series converges!

(Actually converges to ln20.693\ln 2 \approx 0.693)

Note: The regular harmonic series 1n\sum \frac{1}{n} diverges, but the alternating version converges!


Example 2: Use AST

Determine if n=1(1)nnn2+1\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 1} converges.

Check conditions: Let an=nn2+1a_n = \frac{n}{n^2 + 1}

  1. an>0a_n > 0 for all n>0n > 0

  1. Check if decreasing: Is an+1ana_{n+1} \leq a_n?

an+1=n+1(n+1)2+1a_{n+1} = \frac{n+1}{(n+1)^2 + 1}

This is hard to compare directly. Try the derivative test:

Let f(x)=xx2+1f(x) = \frac{x}{x^2 + 1}

f(x)=(x2+1)(1)x(2x)(x2+1)2=1x2(x2+1)2f'(x) = \frac{(x^2+1)(1) - x(2x)}{(x^2+1)^2} = \frac{1 - x^2}{(x^2+1)^2}

For x>1x > 1: 1x2<01 - x^2 < 0, so f(x)<0f'(x) < 0

ana_n is decreasing for n1n \geq 1


  1. Check limit:

limnnn2+1=limn1n+1n=0\lim_{n \to \infty} \frac{n}{n^2 + 1} = \lim_{n \to \infty} \frac{1}{n + \frac{1}{n}} = 0


Conclusion: All three conditions satisfied!

By AST, the series converges.


Example 3: AST Fails

Does n=1(1)nnn+1\sum_{n=1}^{\infty} \frac{(-1)^n n}{n + 1} converge?

Check conditions: Let an=nn+1a_n = \frac{n}{n+1}

  1. an>0a_n > 0

  2. Let's assume it's eventually decreasing (we can verify)

  3. Check limit:

limnnn+1=limn11+1n=10\lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = 1 \neq 0


Condition 3 fails!

Since liman0\lim a_n \neq 0, we have lim(1)nan0\lim (-1)^n a_n \neq 0.

By the nth Term Test: the series diverges.

(Don't even need AST here - nth term test is quicker!)


Absolute vs Conditional Convergence

A series an\sum a_n is:

Absolutely convergent if an\sum |a_n| converges

Conditionally convergent if an\sum a_n converges but an\sum |a_n| diverges

💡 Important: Absolute convergence is stronger than regular convergence!


Theorem: Absolute Convergence Implies Convergence

If an\sum |a_n| converges, then an\sum a_n converges.

Contrapositive: If an\sum a_n diverges, then an\sum |a_n| diverges.


Example 4: Absolute vs Conditional

The alternating harmonic series (1)n+1n\sum \frac{(-1)^{n+1}}{n}:

Converges (by AST)

But: (1)n+1n=1n\sum \left|\frac{(-1)^{n+1}}{n}\right| = \sum \frac{1}{n} (harmonic series) diverges!

This series is conditionally convergent (converges, but not absolutely).


Example 5: Absolutely Convergent

Does n=1(1)nn2\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} converge absolutely, conditionally, or diverge?

Step 1: Test absolute convergence

(1)nn2=1n2\sum \left|\frac{(-1)^n}{n^2}\right| = \sum \frac{1}{n^2}

This is a p-series with p=2>1p = 2 > 1, so it converges!


Conclusion: Since an\sum |a_n| converges, the series is absolutely convergent.

(It's also convergent, since absolute convergence implies convergence)


Alternating Series Estimation Theorem

If (1)nan\sum (-1)^n a_n converges by AST, and SS is the sum, then:

The error after nn terms satisfies:

Rn=SSnan+1|R_n| = |S - S_n| \leq a_{n+1}

💡 Key Idea: Error is at most the first omitted term!

Also: The true sum is between SnS_n and Sn+1S_{n+1} (partial sums bracket the answer).


Example 6: Estimate Error

For n=1(1)n+1n\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}, estimate the error if we use the first 10 terms.

The error is:

R10a11=1110.091|R_{10}| \leq a_{11} = \frac{1}{11} \approx 0.091

So the sum is within 0.091 of S10=112+13+110S_{10} = 1 - \frac{1}{2} + \frac{1}{3} - \cdots + \frac{1}{10}.


Example 7: How Many Terms?

For n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}, how many terms are needed for error less than 0.01?

Need: an+1<0.01a_{n+1} < 0.01

1(n+1)2<0.01=1100\frac{1}{(n+1)^2} < 0.01 = \frac{1}{100}

(n+1)2>100(n+1)^2 > 100

n+1>10n+1 > 10

n10n \geq 10

Need at least 10 terms.


Strategy for Alternating Series

Step 1: Recognize it's alternating (look for (1)n(-1)^n or (1)n+1(-1)^{n+1})

Step 2: Apply AST (check three conditions)

Step 3: If AST works, test for absolute convergence:

  • Check if an\sum |a_n| converges (using p-series, comparison, etc.)
  • If yes: absolutely convergent
  • If no: conditionally convergent

⚠️ Common Mistakes

Mistake 1: Forgetting to Check Decreasing

WRONG: "Since liman=0\lim a_n = 0, AST says it converges"

RIGHT: Must check ALL three conditions! Decreasing is crucial.

Counterexample: an={1nn odd1n2n evena_n = \begin{cases} \frac{1}{n} & n \text{ odd} \\ \frac{1}{n^2} & n \text{ even} \end{cases}

Limit is 0, but not decreasing!


Mistake 2: Testing Wrong Series for Absolute Convergence

WRONG: Test (1)nan\sum (-1)^n a_n for absolute convergence

RIGHT: Test (1)nan=an\sum |(-1)^n a_n| = \sum a_n (drop the (1)n(-1)^n!)


Mistake 3: Using AST on Non-Alternating Series

AST only works for series that alternate signs!

Can't use it on 1n\sum \frac{1}{n} (all positive).


Mistake 4: Confusing Conditional and Absolute

Conditionally convergent: Converges, but not absolutely (more fragile)

Absolutely convergent: Both an\sum a_n and an\sum |a_n| converge (stronger!)

If absolutely convergent, then also convergent (but not vice versa).


Summary Table

| Series | Converges? | an\sum |a_n| Converges? | Type | |--------|------------|------------------------|------| | (1)nn\sum \frac{(-1)^n}{n} | Yes (AST) | No (harmonic) | Conditional | | (1)nn2\sum \frac{(-1)^n}{n^2} | Yes (AST) | Yes (p-series) | Absolute | | (1)nnn+1\sum \frac{(-1)^n n}{n+1} | No (nth term) | No | Divergent |


📝 Practice Strategy

  1. Look for (1)n(-1)^n pattern - signals alternating series
  2. Check nth term test first: If liman0\lim a_n \neq 0, diverges immediately!
  3. Apply AST: Check positive, decreasing (use derivative!), limit is 0
  4. For decreasing: Can use f(x)<0f'(x) < 0 or direct comparison
  5. Test absolute convergence: Drop the (1)n(-1)^n, test an\sum a_n
  6. For error estimates: Use Rnan+1|R_n| \leq a_{n+1}
  7. Memorize: Absolute convergence → convergence (but not reverse!)

📚 Practice Problems

1Problem 1medium

Question:

Determine if n=1(1)nn1/3\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/3}} converges absolutely, conditionally, or diverges.

💡 Show Solution

Step 1: Test for convergence using AST

Let an=1n1/3a_n = \frac{1}{n^{1/3}}

  1. an>0a_n > 0 for all nn

  2. an=1n1/3a_n = \frac{1}{n^{1/3}} is decreasing (larger denominator → smaller value)

  3. limn1n1/3=0\lim_{n \to \infty} \frac{1}{n^{1/3}} = 0

By AST, the series converges.


Step 2: Test for absolute convergence

(1)nn1/3=1n1/3\sum \left|\frac{(-1)^n}{n^{1/3}}\right| = \sum \frac{1}{n^{1/3}}

This is a p-series with p=13<1p = \frac{1}{3} < 1.

By p-series test: diverges!


Step 3: Conclusion

The series converges (by AST) but an\sum |a_n| diverges.

The series is conditionally convergent.

2Problem 2medium

Question:

Determine whether the alternating series converges or diverges:

n=1(1)nn\sum_{n=1}^{\infty} \frac{(-1)^n}{n}

💡 Show Solution

Solution:

This is an alternating series of the form (1)nbn\sum (-1)^n b_n where bn=1nb_n = \frac{1}{n}.

Alternating Series Test conditions:

  1. bn>0b_n > 0 for all nn ✓ (clearly 1n>0\frac{1}{n} > 0)

  2. bnb_n is decreasing: bn+1bnb_{n+1} \leq b_n

    1n+1<1n\frac{1}{n+1} < \frac{1}{n}

  3. limnbn=0\lim_{n \to \infty} b_n = 0

    limn1n=0\lim_{n \to \infty} \frac{1}{n} = 0

All three conditions are satisfied, so by the Alternating Series Test, the series converges.

Note: This is the alternating harmonic series. It converges to ln2\ln 2, even though the regular harmonic series 1n\sum \frac{1}{n} diverges.

3Problem 3easy

Question:

For n=1(1)n+13n\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3^n}, determine convergence type and estimate error using 5 terms.

💡 Show Solution

Step 1: Test for absolute convergence

(1)n+13n=13n\sum \left|\frac{(-1)^{n+1}}{3^n}\right| = \sum \frac{1}{3^n}

This is geometric with r=13<1r = \frac{1}{3} < 1.

Converges! (Sum is 1/311/3=12\frac{1/3}{1-1/3} = \frac{1}{2})


Step 2: Conclusion on convergence

Since an\sum |a_n| converges:

The series is absolutely convergent (and therefore convergent).


Step 3: Estimate error using 5 terms

By Alternating Series Estimation Theorem:

R5a6=136=17290.00137|R_5| \leq a_6 = \frac{1}{3^6} = \frac{1}{729} \approx 0.00137

The error using 5 terms is at most 0.00137.


Step 4: Calculate S5S_5 (optional)

S5=1319+127181+1243S_5 = \frac{1}{3} - \frac{1}{9} + \frac{1}{27} - \frac{1}{81} + \frac{1}{243}

=8127+93+1243=612430.251= \frac{81 - 27 + 9 - 3 + 1}{243} = \frac{61}{243} \approx 0.251

The true sum is approximately 0.251±0.001370.251 \pm 0.00137.

4Problem 4hard

Question:

Show that n=2(1)nlnn\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n} converges and determine if it converges absolutely.

💡 Show Solution

Step 1: Apply Alternating Series Test

Let an=1lnna_n = \frac{1}{\ln n} for n2n \geq 2

  1. an=1lnn>0a_n = \frac{1}{\ln n} > 0 for n2n \geq 2 (since lnn>0\ln n > 0 for n>1n > 1)

  1. Check if decreasing: As nn increases, lnn\ln n increases, so 1lnn\frac{1}{\ln n} decreases ✓

Or use derivative: f(x)=1lnxf(x) = \frac{1}{\ln x}

f(x)=1x(lnx)2<0f'(x) = -\frac{1}{x(\ln x)^2} < 0 for x>1x > 1


  1. Check limit:

limn1lnn=0\lim_{n \to \infty} \frac{1}{\ln n} = 0

(Since lnn\ln n \to \infty)


By AST, the series converges.


Step 2: Test for absolute convergence

n=2(1)nlnn=n=21lnn\sum_{n=2}^{\infty} \left|\frac{(-1)^n}{\ln n}\right| = \sum_{n=2}^{\infty} \frac{1}{\ln n}

Compare to 1n\sum \frac{1}{n} using Limit Comparison Test:

limn1lnn1n=limnnlnn\lim_{n \to \infty} \frac{\frac{1}{\ln n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{\ln n}

This is \frac{\infty}{\infty} form. Use L'Hôpital's:

=limn11/n=limnn== \lim_{n \to \infty} \frac{1}{1/n} = \lim_{n \to \infty} n = \infty

Since the limit is \infty and 1n\sum \frac{1}{n} diverges, 1lnn\sum \frac{1}{\ln n} diverges.


Step 3: Conclusion

The series converges (by AST) but does not converge absolutely.

The series is conditionally convergent.