Acid-Base Theories and pH Scale

Understand Arrhenius, Brønsted-Lowry, and Lewis theories; master pH, pOH, and the pH scale.

Acid-Base Theories and pH Scale

Arrhenius Theory

Simplest definition (aqueous solutions):

Acid: Produces H⁺ in water

  • HCl → H⁺ + Cl⁻

Base: Produces OH⁻ in water

  • NaOH → Na⁺ + OH⁻

Limitation: Only for aqueous solutions

Brønsted-Lowry Theory

More general definition:

Acid: Proton (H⁺) donor Base: Proton (H⁺) acceptor

Example:

\ceHCl+H2O>H3O++Cl\ce{HCl + H2O -> H3O^+ + Cl^-}

  • HCl: acid (donates H⁺)
  • H₂O: base (accepts H⁺)

Conjugate acid-base pairs:

\ceHA+B<=>A+HB+\ce{HA + B <=> A^- + HB^+}

  • HA/A⁻: conjugate pair (differ by H⁺)
  • B/HB⁺: conjugate pair

Example: NH₃ + H₂O ⇌ NH₄⁺ + OH⁻

  • NH₃/NH₄⁺: conjugate pair
  • H₂O/OH⁻: conjugate pair

Lewis Theory

Most general:

Acid: Electron pair acceptor Base: Electron pair donor

Example: BF₃ + NH₃ → F₃B-NH₃

  • BF₃: Lewis acid (accepts electron pair)
  • NH₃: Lewis base (donates electron pair)

All Brønsted acids/bases are Lewis, but not vice versa

Autoionization of Water

Water self-ionizes:

\ce2H2O<=>H3O++OH\ce{2H2O <=> H3O^+ + OH^-}

Simplified: H₂O ⇌ H⁺ + OH⁻

Ion product constant (K_w):

Kw=[H+][OH]=1.0×1014 at 25°CK_w = [H^+][OH^-] = 1.0 \times 10^{-14} \text{ at 25°C}

Key relationships:

  • Pure water: [H⁺] = [OH⁻] = 1.0 × 10⁻⁷ M
  • Acidic: [H⁺] > [OH⁻]
  • Basic: [H⁺] < [OH⁻]
  • Always: [H⁺][OH⁻] = 1.0 × 10⁻¹⁴

pH Scale

pH definition:

pH=log[H+]\text{pH} = -\log[H^+]

pOH definition:

pOH=log[OH]\text{pOH} = -\log[OH^-]

Relationship:

pH+pOH=14.00 at 25°C\text{pH} + \text{pOH} = 14.00 \text{ at 25°C}

pH Scale interpretation:

| pH | [H⁺] (M) | Type | |----|----------|------| | 0 | 1 | Very acidic | | 1 | 0.1 | Strong acid | | 7 | 1.0 × 10⁻⁷ | Neutral | | 13 | 1.0 × 10⁻¹³ | Strong base | | 14 | 1.0 × 10⁻¹⁴ | Very basic |

Ranges:

  • pH < 7: Acidic
  • pH = 7: Neutral
  • pH > 7: Basic

Calculating pH

From [H⁺]:

pH=log[H+]\text{pH} = -\log[H^+]

Example: [H⁺] = 1.0 × 10⁻³ M

pH = -log(1.0 × 10⁻³) = 3.00

From [OH⁻]:

  1. Calculate pOH = -log[OH⁻]
  2. pH = 14.00 - pOH

Example: [OH⁻] = 1.0 × 10⁻⁴ M

pOH = -log(1.0 × 10⁻⁴) = 4.00 pH = 14.00 - 4.00 = 10.00

Calculating [H⁺] from pH

Inverse relationship:

[H+]=10pH[H^+] = 10^{-\text{pH}}

Example: pH = 5.00

[H⁺] = 10⁻⁵·⁰⁰ = 1.0 × 10⁻⁵ M

Strong Acids and Bases

Strong acids (completely ionize):

  • HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄

For strong monoprotic acid:

  • [H⁺] = [acid]

Example: 0.010 M HCl

  • [H⁺] = 0.010 M
  • pH = -log(0.010) = 2.00

Strong bases (completely dissociate):

  • Group 1A hydroxides: LiOH, NaOH, KOH
  • Group 2A hydroxides: Ca(OH)₂, Ba(OH)₂, Sr(OH)₂

For strong base:

  • [OH⁻] = [base] × (number of OH⁻)

Example: 0.010 M NaOH

  • [OH⁻] = 0.010 M
  • pOH = 2.00
  • pH = 12.00

Example: 0.010 M Ca(OH)₂

  • [OH⁻] = 2 × 0.010 = 0.020 M
  • pOH = -log(0.020) = 1.70
  • pH = 14.00 - 1.70 = 12.30

Significant Figures in pH

pH has decimal places = sig figs in [H⁺]

Example: [H⁺] = 2.5 × 10⁻³ M (2 sig figs)

  • pH = 2.60 (2 decimal places)

The digits before decimal point come from exponent

📚 Practice Problems

1Problem 1easy

Question:

Identify the conjugate acid-base pairs in: HF(aq) + NH₃(aq) ⇌ F⁻(aq) + NH₄⁺(aq)

💡 Show Solution

Reaction: HF(aq) + NH₃(aq) ⇌ F⁻(aq) + NH₄⁺(aq)


Identify acids and bases:

Left side (reactants):

  • HF: Has H⁺ to donate → acid
  • NH₃: Can accept H⁺ → base

Right side (products):

  • F⁻: Accepted H⁺ to become HF → base
  • NH₄⁺: Donated H⁺ to become NH₃ → acid

Conjugate pairs differ by one H⁺:

Pair 1: HF and F⁻

  • HF → F⁻ + H⁺
  • HF is acid, F⁻ is its conjugate base
  • HF/F⁻ conjugate acid-base pair

Pair 2: NH₃ and NH₄⁺

  • NH₃ + H⁺ → NH₄⁺
  • NH₃ is base, NH₄⁺ is its conjugate acid
  • NH₃/NH₄⁺ conjugate acid-base pair

Summary:

| Species | Role | Conjugate | |---------|------|-----------| | HF | Acid | F⁻ (conjugate base) | | NH₃ | Base | NH₄⁺ (conjugate acid) | | F⁻ | Conjugate base | of HF | | NH₄⁺ | Conjugate acid | of NH₃ |

Answers:

  • Pair 1: HF/F⁻
  • Pair 2: NH₃/NH₄⁺

Pattern: Conjugate pairs always differ by exactly one proton (H⁺)

2Problem 2easy

Question:

(a) Calculate the pH of a solution with [H⁺] = 2.5 × 10⁻⁴ M. (b) Calculate the pOH. (c) Is this solution acidic, basic, or neutral?

💡 Show Solution

Solution:

(a) Calculate pH: pH = -log[H⁺] pH = -log(2.5 × 10⁻⁴) pH = 3.60

(b) Calculate pOH: pH + pOH = 14.00 pOH = 14.00 - 3.60 = 10.40

(c) Acidic, basic, or neutral? pH < 7, so the solution is acidic

3Problem 3medium

Question:

Calculate the pH and pOH of a solution with [OH⁻] = 3.5 × 10⁻⁴ M at 25°C.

💡 Show Solution

Given:

  • [OH⁻] = 3.5 × 10⁻⁴ M
  • T = 25°C (K_w = 1.0 × 10⁻¹⁴)

Calculate pOH:

pOH=log[OH]\text{pOH} = -\log[OH^-]

pOH=log(3.5×104)\text{pOH} = -\log(3.5 \times 10^{-4})

Using calculator:

pOH=(log3.5+log104)\text{pOH} = -(\log 3.5 + \log 10^{-4})

pOH=(0.5444)\text{pOH} = -(0.544 - 4)

pOH=(3.456)\text{pOH} = -(-3.456)

pOH=3.456\text{pOH} = 3.456

Round to 2 decimal places (2 sig figs in 3.5):

pOH = 3.46


Calculate pH:

Use relationship:

pH+pOH=14.00\text{pH} + \text{pOH} = 14.00

pH=14.00pOH\text{pH} = 14.00 - \text{pOH}

pH=14.003.46\text{pH} = 14.00 - 3.46

pH=10.54\text{pH} = 10.54


Verify using [H⁺]:

From K_w:

[H+]=Kw[OH]=1.0×10143.5×104[H^+] = \frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{3.5 \times 10^{-4}}

[H+]=2.86×1011 M[H^+] = 2.86 \times 10^{-11} \text{ M}

pH:

pH=log(2.86×1011)=10.54\text{pH} = -\log(2.86 \times 10^{-11}) = 10.54


Answers:

  • pOH = 3.46
  • pH = 10.54

Interpretation: pH > 7, solution is basic

4Problem 4medium

Question:

Calculate the pH of a 0.025 M HCl solution. Assume HCl is a strong acid that completely dissociates.

💡 Show Solution

Solution:

HCl dissociation: HCl → H⁺ + Cl⁻

Since HCl is a strong acid, it completely dissociates: [H⁺] = 0.025 M

Calculate pH: pH = -log[H⁺] pH = -log(0.025) pH = -log(2.5 × 10⁻²) pH = 1.60

Note: For strong acids (HCl, HNO₃, H₂SO₄, HBr, HI, HClO₄), pH calculation is straightforward because [H⁺] = initial acid concentration.

5Problem 5hard

Question:

A solution of Ba(OH)₂ has pH = 12.60 at 25°C. Calculate the concentration of Ba(OH)₂.

💡 Show Solution

Given:

  • Compound: Ba(OH)₂ (strong base)
  • pH = 12.60
  • T = 25°C

Note: Ba(OH)₂ → Ba²⁺ + 2OH⁻ (2 OH⁻ per formula unit)


Calculate pOH:

pH+pOH=14.00\text{pH} + \text{pOH} = 14.00

pOH=14.0012.60=1.40\text{pOH} = 14.00 - 12.60 = 1.40


Calculate [OH⁻]:

[OH]=10pOH[OH^-] = 10^{-\text{pOH}}

[OH]=101.40[OH^-] = 10^{-1.40}

[OH]=3.98×102 M[OH^-] = 3.98 \times 10^{-2} \text{ M}

[OH]=0.0398 M[OH^-] = 0.0398 \text{ M}


Calculate [Ba(OH)₂]:

Stoichiometry: Ba(OH)₂ → Ba²⁺ + 2OH⁻

Each Ba(OH)₂ produces 2 OH⁻:

[Ba(OH)2]=[OH]2[Ba(OH)_2] = \frac{[OH^-]}{2}

[Ba(OH)2]=0.03982[Ba(OH)_2] = \frac{0.0398}{2}

[Ba(OH)2]=0.0199 M[Ba(OH)_2] = 0.0199 \text{ M}

Answer: [Ba(OH)₂] = 0.020 M or 2.0 × 10⁻² M


Verify:

If [Ba(OH)₂] = 0.020 M:

  • [OH⁻] = 2 × 0.020 = 0.040 M
  • pOH = -log(0.040) = 1.40
  • pH = 14.00 - 1.40 = 12.60 ✓

Key point: Remember to account for stoichiometry!

Ba(OH)₂ produces 2 moles OH⁻ per mole compound.